XUltra项目——卵巢超声图像的自动分析

B. Potočnik, B. Cigale, D. Zazula
{"title":"XUltra项目——卵巢超声图像的自动分析","authors":"B. Potočnik, B. Cigale, D. Zazula","doi":"10.1109/CBMS.2002.1011387","DOIUrl":null,"url":null,"abstract":"The paper deals with the problem of processing and interpretation of clinically recorded ultrasound images for the reason of following the growth of dominant ovarian follicles in a day-to-day manner. A part of the XUltra project achievements is presented. We propose three different automatic computer-based follicle identification algorithms. The first one is based on cellular neural networks. The second one is based on region growing segmentation method, while the third one processes entire image sequence with a predictor-corrector recognition scheme. The recognition rate of follicles with these algorithms goes up to 78%, while the misidentification rate is around 15%.","PeriodicalId":369629,"journal":{"name":"Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002)","volume":"13 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"The XUltra project-automated analysis of ovarian ultrasound images\",\"authors\":\"B. Potočnik, B. Cigale, D. Zazula\",\"doi\":\"10.1109/CBMS.2002.1011387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the problem of processing and interpretation of clinically recorded ultrasound images for the reason of following the growth of dominant ovarian follicles in a day-to-day manner. A part of the XUltra project achievements is presented. We propose three different automatic computer-based follicle identification algorithms. The first one is based on cellular neural networks. The second one is based on region growing segmentation method, while the third one processes entire image sequence with a predictor-corrector recognition scheme. The recognition rate of follicles with these algorithms goes up to 78%, while the misidentification rate is around 15%.\",\"PeriodicalId\":369629,\"journal\":{\"name\":\"Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002)\",\"volume\":\"13 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2002.1011387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2002.1011387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文讨论了临床记录超声图像的处理和解释问题,原因是在日常生活中跟踪显性卵巢卵泡的生长。介绍了XUltra项目的部分成果。我们提出了三种不同的基于计算机的自动卵泡识别算法。第一种是基于细胞神经网络的。第二种方法是基于区域增长分割方法,而第三种方法是基于预测-校正识别方案处理整个图像序列。这些算法对卵泡的识别率高达78%,而误认率在15%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The XUltra project-automated analysis of ovarian ultrasound images
The paper deals with the problem of processing and interpretation of clinically recorded ultrasound images for the reason of following the growth of dominant ovarian follicles in a day-to-day manner. A part of the XUltra project achievements is presented. We propose three different automatic computer-based follicle identification algorithms. The first one is based on cellular neural networks. The second one is based on region growing segmentation method, while the third one processes entire image sequence with a predictor-corrector recognition scheme. The recognition rate of follicles with these algorithms goes up to 78%, while the misidentification rate is around 15%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信