基于RISE反馈的机器人编队神经网络控制

T. Dierks, S. Jagannathan
{"title":"基于RISE反馈的机器人编队神经网络控制","authors":"T. Dierks, S. Jagannathan","doi":"10.1109/IJCNN.2007.4371402","DOIUrl":null,"url":null,"abstract":"In this paper, a combined kinematic/torque control law is developed for leader-follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers that are widely reported in the literature. A neural network (NN) is introduced along with robust integral of the sign of the error (RISE) feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are asymptotically stable and the NN weights are bounded as opposed to uniformly ultimately bounded (UUB) stability which is typical with most NN controllers. Theoretical results are demonstrated using numerical simulations.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural Network Control of Robot Formations using RISE Feedback\",\"authors\":\"T. Dierks, S. Jagannathan\",\"doi\":\"10.1109/IJCNN.2007.4371402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a combined kinematic/torque control law is developed for leader-follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers that are widely reported in the literature. A neural network (NN) is introduced along with robust integral of the sign of the error (RISE) feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are asymptotically stable and the NN weights are bounded as opposed to uniformly ultimately bounded (UUB) stability which is typical with most NN controllers. Theoretical results are demonstrated using numerical simulations.\",\"PeriodicalId\":350091,\"journal\":{\"name\":\"2007 International Joint Conference on Neural Networks\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2007.4371402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与文献中广泛报道的基于运动学的群体控制器相比,本文针对基于leader-follower的群体控制提出了一种基于后退的运动学/扭矩组合控制律,以适应机器人和群体的动力学。引入神经网络(NN)和误差符号(RISE)反馈的鲁棒积分,利用在线权值调整来近似跟随者及其领导者的动态。利用李雅普诺夫理论证明了整个编队的误差是渐近稳定的,并且神经网络的权值是有界的,而不是大多数神经网络控制器典型的一致最终有界(UUB)稳定性。通过数值模拟验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Control of Robot Formations using RISE Feedback
In this paper, a combined kinematic/torque control law is developed for leader-follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers that are widely reported in the literature. A neural network (NN) is introduced along with robust integral of the sign of the error (RISE) feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are asymptotically stable and the NN weights are bounded as opposed to uniformly ultimately bounded (UUB) stability which is typical with most NN controllers. Theoretical results are demonstrated using numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信