用粒子滤波降低非线性系统的感觉误差

H. Bayram, A. Ertuzun, H. Bozma
{"title":"用粒子滤波降低非线性系统的感觉误差","authors":"H. Bayram, A. Ertuzun, H. Bozma","doi":"10.1109/SIU.2006.1659715","DOIUrl":null,"url":null,"abstract":"In signal processing and control applications, on-line state estimation plays important role in stability of the system. In cases where state and/or measurement functions are highly nonlinear and/or the noise is not Gaussian, conventional filters such as extended Kalman filters do not provide satisfactory results. In this paper, particle filters and its application to a nonlinear problem are examined","PeriodicalId":415037,"journal":{"name":"2006 IEEE 14th Signal Processing and Communications Applications","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction of Sensory Inaccuracy in Nonlinear Systems using Particle Filters\",\"authors\":\"H. Bayram, A. Ertuzun, H. Bozma\",\"doi\":\"10.1109/SIU.2006.1659715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In signal processing and control applications, on-line state estimation plays important role in stability of the system. In cases where state and/or measurement functions are highly nonlinear and/or the noise is not Gaussian, conventional filters such as extended Kalman filters do not provide satisfactory results. In this paper, particle filters and its application to a nonlinear problem are examined\",\"PeriodicalId\":415037,\"journal\":{\"name\":\"2006 IEEE 14th Signal Processing and Communications Applications\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE 14th Signal Processing and Communications Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2006.1659715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 14th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2006.1659715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在信号处理和控制应用中,在线状态估计对系统的稳定性起着重要的作用。在状态和/或测量函数是高度非线性和/或噪声不是高斯的情况下,传统滤波器如扩展卡尔曼滤波器不能提供令人满意的结果。本文研究了粒子滤波及其在非线性问题中的应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction of Sensory Inaccuracy in Nonlinear Systems using Particle Filters
In signal processing and control applications, on-line state estimation plays important role in stability of the system. In cases where state and/or measurement functions are highly nonlinear and/or the noise is not Gaussian, conventional filters such as extended Kalman filters do not provide satisfactory results. In this paper, particle filters and its application to a nonlinear problem are examined
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信