求解线性方程组的一类新的并行算法

K. Jainandunsing, E. Deprettere
{"title":"求解线性方程组的一类新的并行算法","authors":"K. Jainandunsing, E. Deprettere","doi":"10.1137/0910051","DOIUrl":null,"url":null,"abstract":"In this paper a class of novel feed-forward direct methods is presented for solving nonsingular systems of linear equations. The computational complexity of these methods is in the order of an $LU$, $QR$, or $LL^t $ matrix factorization. This is also true for the complexity of their systolic implementations. Unlike the direct methods of factorization followed by backsubstitution, the systolic implementations of the novel methods do not suffer from the backsubstitution bottleneck. A numerically stable and robust method, which uses only Givens rotations as elementary operations, is included in the class.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"A new class of parallel algorithms for solving systems of linear equations\",\"authors\":\"K. Jainandunsing, E. Deprettere\",\"doi\":\"10.1137/0910051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a class of novel feed-forward direct methods is presented for solving nonsingular systems of linear equations. The computational complexity of these methods is in the order of an $LU$, $QR$, or $LL^t $ matrix factorization. This is also true for the complexity of their systolic implementations. Unlike the direct methods of factorization followed by backsubstitution, the systolic implementations of the novel methods do not suffer from the backsubstitution bottleneck. A numerically stable and robust method, which uses only Givens rotations as elementary operations, is included in the class.\",\"PeriodicalId\":200176,\"journal\":{\"name\":\"Siam Journal on Scientific and Statistical Computing\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam Journal on Scientific and Statistical Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0910051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0910051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

本文提出了一类求解非奇异线性方程组的前馈直接方法。这些方法的计算复杂度按$LU$、$QR$或$LL^t $矩阵分解的顺序排列。它们的收缩实现的复杂性也是如此。与直接分解后进行反向替换的方法不同,新方法的收缩实现不会受到反向替换瓶颈的影响。类中包含了一种数值稳定且鲁棒的方法,该方法仅使用Givens旋转作为基本操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new class of parallel algorithms for solving systems of linear equations
In this paper a class of novel feed-forward direct methods is presented for solving nonsingular systems of linear equations. The computational complexity of these methods is in the order of an $LU$, $QR$, or $LL^t $ matrix factorization. This is also true for the complexity of their systolic implementations. Unlike the direct methods of factorization followed by backsubstitution, the systolic implementations of the novel methods do not suffer from the backsubstitution bottleneck. A numerically stable and robust method, which uses only Givens rotations as elementary operations, is included in the class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信