声音事件定位与检测的模型集成方法

Qing Wang, Huaxin Wu, Zijun Jing, Feng Ma, Yi Fang, Yuxuan Wang, Tairan Chen, Jia Pan, Jun Du, Chin-Hui Lee
{"title":"声音事件定位与检测的模型集成方法","authors":"Qing Wang, Huaxin Wu, Zijun Jing, Feng Ma, Yi Fang, Yuxuan Wang, Tairan Chen, Jia Pan, Jun Du, Chin-Hui Lee","doi":"10.1109/ISCSLP49672.2021.9362116","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a model ensemble approach for sound event localization and detection (SELD). We adopt several deep neural network (DNN) architectures to perform sound event detection (SED) and direction-of-arrival (DOA) estimation simultaneously. Generally, the DNN architecture consists of three modules stacked together, i.e, a High-level Feature Representation module, a Temporal Context Representation module, and a Fully-connected module in the end. The High-level Feature Representation module usually contains a series of convolutional neural network (CNN) layers to extract useful local features. The Temporal Context Representation module aims to model longer temporal context dependency in the extracted features. There are two parallel branches in the Fully-connected module with one for SED estimation and the other for DOA estimation. With different combinations of implementation in the High-level Feature Representation module and Temporal Context Representation module, several network architectures are used for the SELD task. At last, a more robust prediction of SED and DOA is obtained by model ensemble and post-processing. Tested on the development and evaluation datasets, the proposed approach achieves promising results and ranks the first place in DCASE 2020 task3 challenge. Index Terms: sound event localization and detection, deep neural network, model ensemble","PeriodicalId":279828,"journal":{"name":"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Model Ensemble Approach for Sound Event Localization and Detection\",\"authors\":\"Qing Wang, Huaxin Wu, Zijun Jing, Feng Ma, Yi Fang, Yuxuan Wang, Tairan Chen, Jia Pan, Jun Du, Chin-Hui Lee\",\"doi\":\"10.1109/ISCSLP49672.2021.9362116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a model ensemble approach for sound event localization and detection (SELD). We adopt several deep neural network (DNN) architectures to perform sound event detection (SED) and direction-of-arrival (DOA) estimation simultaneously. Generally, the DNN architecture consists of three modules stacked together, i.e, a High-level Feature Representation module, a Temporal Context Representation module, and a Fully-connected module in the end. The High-level Feature Representation module usually contains a series of convolutional neural network (CNN) layers to extract useful local features. The Temporal Context Representation module aims to model longer temporal context dependency in the extracted features. There are two parallel branches in the Fully-connected module with one for SED estimation and the other for DOA estimation. With different combinations of implementation in the High-level Feature Representation module and Temporal Context Representation module, several network architectures are used for the SELD task. At last, a more robust prediction of SED and DOA is obtained by model ensemble and post-processing. Tested on the development and evaluation datasets, the proposed approach achieves promising results and ranks the first place in DCASE 2020 task3 challenge. Index Terms: sound event localization and detection, deep neural network, model ensemble\",\"PeriodicalId\":279828,\"journal\":{\"name\":\"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCSLP49672.2021.9362116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP49672.2021.9362116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种用于声事件定位与检测的模型集成方法。我们采用了几种深度神经网络(DNN)架构来同时进行声事件检测(SED)和到达方向(DOA)估计。一般来说,DNN架构由三个堆叠在一起的模块组成,即高级特征表示模块、时态上下文表示模块和最后的全连接模块。高级特征表示模块通常包含一系列卷积神经网络(CNN)层来提取有用的局部特征。时间上下文表示模块旨在对提取的特征中较长的时间上下文依赖关系进行建模。在全连接模块中有两个并行分支,一个用于SED估计,另一个用于DOA估计。通过高级特征表示模块和时态上下文表示模块的不同实现组合,SELD任务使用了几种网络体系结构。最后,通过模型集成和后处理,获得了更加鲁棒的SED和DOA预测结果。在开发和评估数据集上进行了测试,取得了令人满意的结果,并在DCASE 2020任务3挑战中排名第一。检索术语:声音事件定位与检测,深度神经网络,模型集成
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Model Ensemble Approach for Sound Event Localization and Detection
In this paper, we propose a model ensemble approach for sound event localization and detection (SELD). We adopt several deep neural network (DNN) architectures to perform sound event detection (SED) and direction-of-arrival (DOA) estimation simultaneously. Generally, the DNN architecture consists of three modules stacked together, i.e, a High-level Feature Representation module, a Temporal Context Representation module, and a Fully-connected module in the end. The High-level Feature Representation module usually contains a series of convolutional neural network (CNN) layers to extract useful local features. The Temporal Context Representation module aims to model longer temporal context dependency in the extracted features. There are two parallel branches in the Fully-connected module with one for SED estimation and the other for DOA estimation. With different combinations of implementation in the High-level Feature Representation module and Temporal Context Representation module, several network architectures are used for the SELD task. At last, a more robust prediction of SED and DOA is obtained by model ensemble and post-processing. Tested on the development and evaluation datasets, the proposed approach achieves promising results and ranks the first place in DCASE 2020 task3 challenge. Index Terms: sound event localization and detection, deep neural network, model ensemble
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信