节能架构的功率性能权衡:一项定量研究

Hongbo Yang, R. Govindarajan, G. Gao, K. B. Theobald
{"title":"节能架构的功率性能权衡:一项定量研究","authors":"Hongbo Yang, R. Govindarajan, G. Gao, K. B. Theobald","doi":"10.1109/ICCD.2002.1106766","DOIUrl":null,"url":null,"abstract":"The drastic increase in power consumption by modern processors emphasizes the need for power-performance trade-offs in architecture design space exploration and compiler optimizations. This paper reports a quantitative study on the power-performance trade-offs in software pipelined schedules for an Itanium-like EPIC architecture with dual-speed pipelines, in which functional units are partitioned into fast ones and slow ones. We have developed an integer linear programming formulation to capture the power-performance tradeoffs for software pipelined loops. The proposed integer linear programming formulation and its solution method have been implemented and tested on a set of SPEC2000 benchmarks. The results are compared with an Itanium-like architecture (baseline) in which there are four functional units (FUs) and all of them are fast units. Our quantitative study reveals that by introducing a few slow FUs in place of fast FUs in the baseline architecture, the total energy consumed by FUs can be considerably reduced. When 2 out of 4 FUs are set as slow, the total energy consumed by FUs is reduced by up to 31.1% (with an average reduction of 25.2%) compared with the baseline configuration, while the performance degradation caused by using slow FUs is small. If performance demand is less critical, then energy reduction of up to 40.3% compared with the baseline configuration can be achieved.","PeriodicalId":164768,"journal":{"name":"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Power-performance trade-offs for energy-efficient architectures: A quantitative study\",\"authors\":\"Hongbo Yang, R. Govindarajan, G. Gao, K. B. Theobald\",\"doi\":\"10.1109/ICCD.2002.1106766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The drastic increase in power consumption by modern processors emphasizes the need for power-performance trade-offs in architecture design space exploration and compiler optimizations. This paper reports a quantitative study on the power-performance trade-offs in software pipelined schedules for an Itanium-like EPIC architecture with dual-speed pipelines, in which functional units are partitioned into fast ones and slow ones. We have developed an integer linear programming formulation to capture the power-performance tradeoffs for software pipelined loops. The proposed integer linear programming formulation and its solution method have been implemented and tested on a set of SPEC2000 benchmarks. The results are compared with an Itanium-like architecture (baseline) in which there are four functional units (FUs) and all of them are fast units. Our quantitative study reveals that by introducing a few slow FUs in place of fast FUs in the baseline architecture, the total energy consumed by FUs can be considerably reduced. When 2 out of 4 FUs are set as slow, the total energy consumed by FUs is reduced by up to 31.1% (with an average reduction of 25.2%) compared with the baseline configuration, while the performance degradation caused by using slow FUs is small. If performance demand is less critical, then energy reduction of up to 40.3% compared with the baseline configuration can be achieved.\",\"PeriodicalId\":164768,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2002.1106766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2002.1106766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

现代处理器功耗的急剧增加强调了在架构设计、空间探索和编译器优化中需要权衡功耗和性能。本文定量研究了一种类似itanium的具有双速度管道的EPIC架构的软件流水线调度的功率性能权衡,其中功能单元被划分为快速和慢速管道。我们已经开发了一个整数线性规划公式来捕获软件流水线循环的功率性能权衡。所提出的整数线性规划公式及其求解方法已在一组SPEC2000基准上实现并进行了测试。结果与类似itanium的架构(基线)进行了比较,其中有四个功能单元(FUs),并且它们都是快速单元。我们的定量研究表明,通过在基线架构中引入一些慢速的FUs来代替快速的FUs,可以大大降低FUs消耗的总能量。当4个FUs中有2个被设置为慢速时,与基线配置相比,FUs消耗的总能量减少了31.1%(平均减少25.2%),而使用慢速FUs引起的性能下降很小。如果性能需求不那么关键,那么与基线配置相比,可以实现高达40.3%的能耗降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power-performance trade-offs for energy-efficient architectures: A quantitative study
The drastic increase in power consumption by modern processors emphasizes the need for power-performance trade-offs in architecture design space exploration and compiler optimizations. This paper reports a quantitative study on the power-performance trade-offs in software pipelined schedules for an Itanium-like EPIC architecture with dual-speed pipelines, in which functional units are partitioned into fast ones and slow ones. We have developed an integer linear programming formulation to capture the power-performance tradeoffs for software pipelined loops. The proposed integer linear programming formulation and its solution method have been implemented and tested on a set of SPEC2000 benchmarks. The results are compared with an Itanium-like architecture (baseline) in which there are four functional units (FUs) and all of them are fast units. Our quantitative study reveals that by introducing a few slow FUs in place of fast FUs in the baseline architecture, the total energy consumed by FUs can be considerably reduced. When 2 out of 4 FUs are set as slow, the total energy consumed by FUs is reduced by up to 31.1% (with an average reduction of 25.2%) compared with the baseline configuration, while the performance degradation caused by using slow FUs is small. If performance demand is less critical, then energy reduction of up to 40.3% compared with the baseline configuration can be achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信