{"title":"利用非单调规则层挖掘概率规则","authors":"S. Tsumoto, S. Hirano","doi":"10.1109/ICCI-CC.2015.7259384","DOIUrl":null,"url":null,"abstract":"This paper proposes a new framework for rule induction methods based on rule layers constrained by inequalities of accuracy and coverage. When the changes of accuracy and coverage are considered with an additional example, four patterns of updates of accuracy and coverage are observed and give two important inequalities of accuracy and coverage for induction of probabilistic rules. By using these two inequalities, the proposed method classifies a set of formulae into four layers: the rule layer, subrule layer (in and out) and the non-rule layer. Using these layers, updates of probabilistic rules are equivalent to their movement between layers. The proposed method was evaluated on datasets regarding headaches and meningitis, and the results show that the proposed method outperforms the conventional methods.","PeriodicalId":328695,"journal":{"name":"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining probabilistic rules using nonmonotonic rule layers\",\"authors\":\"S. Tsumoto, S. Hirano\",\"doi\":\"10.1109/ICCI-CC.2015.7259384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new framework for rule induction methods based on rule layers constrained by inequalities of accuracy and coverage. When the changes of accuracy and coverage are considered with an additional example, four patterns of updates of accuracy and coverage are observed and give two important inequalities of accuracy and coverage for induction of probabilistic rules. By using these two inequalities, the proposed method classifies a set of formulae into four layers: the rule layer, subrule layer (in and out) and the non-rule layer. Using these layers, updates of probabilistic rules are equivalent to their movement between layers. The proposed method was evaluated on datasets regarding headaches and meningitis, and the results show that the proposed method outperforms the conventional methods.\",\"PeriodicalId\":328695,\"journal\":{\"name\":\"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCI-CC.2015.7259384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2015.7259384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mining probabilistic rules using nonmonotonic rule layers
This paper proposes a new framework for rule induction methods based on rule layers constrained by inequalities of accuracy and coverage. When the changes of accuracy and coverage are considered with an additional example, four patterns of updates of accuracy and coverage are observed and give two important inequalities of accuracy and coverage for induction of probabilistic rules. By using these two inequalities, the proposed method classifies a set of formulae into four layers: the rule layer, subrule layer (in and out) and the non-rule layer. Using these layers, updates of probabilistic rules are equivalent to their movement between layers. The proposed method was evaluated on datasets regarding headaches and meningitis, and the results show that the proposed method outperforms the conventional methods.