基于神经空间映射的半导体建模新方法

M. G. Armaki, Mohamad Kazem Anvarifard, S. E. Hosseini
{"title":"基于神经空间映射的半导体建模新方法","authors":"M. G. Armaki, Mohamad Kazem Anvarifard, S. E. Hosseini","doi":"10.1109/ELECTRO.2009.5441153","DOIUrl":null,"url":null,"abstract":"The drift-diffusion (DD) model is not accurate for simulation of submicrometer semiconductor devices. Using RBF NN, a neuro space mapping is proposed to DD model parameters. The DD model with mapped parameters can produce accurate simulation results of the hydrodynamic model. Simulations of a n-i-n diode confirm the ability of the proposed method for submicron device simulation.","PeriodicalId":149384,"journal":{"name":"2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method for modeling semiconductor by neuro space mapping\",\"authors\":\"M. G. Armaki, Mohamad Kazem Anvarifard, S. E. Hosseini\",\"doi\":\"10.1109/ELECTRO.2009.5441153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The drift-diffusion (DD) model is not accurate for simulation of submicrometer semiconductor devices. Using RBF NN, a neuro space mapping is proposed to DD model parameters. The DD model with mapped parameters can produce accurate simulation results of the hydrodynamic model. Simulations of a n-i-n diode confirm the ability of the proposed method for submicron device simulation.\",\"PeriodicalId\":149384,\"journal\":{\"name\":\"2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELECTRO.2009.5441153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELECTRO.2009.5441153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

漂移-扩散(DD)模型对于亚微米半导体器件的模拟是不准确的。利用RBF神经网络,提出了一种DD模型参数的神经空间映射。带参数映射的DD模型可以得到精确的水动力模型仿真结果。对n-i-n二极管的仿真验证了该方法在亚微米器件仿真中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel method for modeling semiconductor by neuro space mapping
The drift-diffusion (DD) model is not accurate for simulation of submicrometer semiconductor devices. Using RBF NN, a neuro space mapping is proposed to DD model parameters. The DD model with mapped parameters can produce accurate simulation results of the hydrodynamic model. Simulations of a n-i-n diode confirm the ability of the proposed method for submicron device simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信