通过扩展参考序列提高基因组压缩性能

XiangDong Ma, Jianhua Chen
{"title":"通过扩展参考序列提高基因组压缩性能","authors":"XiangDong Ma, Jianhua Chen","doi":"10.1109/ISBP57705.2023.10061320","DOIUrl":null,"url":null,"abstract":"We propose an efficient referential genome compression algorithm called RCCG. It extends reference genomes by its reverse complementation and uses coprime window sampling to detect the maximum matches (MEMs) between two genome sequences. After the assessment, those selected matches will be united to form mutation-containing matches (MCMs). The average compression ratio of the proposed algorithm is higher than that of the state-of-the-art genome compression algorithms.","PeriodicalId":309634,"journal":{"name":"2023 International Conference on Intelligent Supercomputing and BioPharma (ISBP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Genome Compression Performance by Extending Reference Sequences\",\"authors\":\"XiangDong Ma, Jianhua Chen\",\"doi\":\"10.1109/ISBP57705.2023.10061320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an efficient referential genome compression algorithm called RCCG. It extends reference genomes by its reverse complementation and uses coprime window sampling to detect the maximum matches (MEMs) between two genome sequences. After the assessment, those selected matches will be united to form mutation-containing matches (MCMs). The average compression ratio of the proposed algorithm is higher than that of the state-of-the-art genome compression algorithms.\",\"PeriodicalId\":309634,\"journal\":{\"name\":\"2023 International Conference on Intelligent Supercomputing and BioPharma (ISBP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Intelligent Supercomputing and BioPharma (ISBP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBP57705.2023.10061320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Intelligent Supercomputing and BioPharma (ISBP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBP57705.2023.10061320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种高效的参考基因组压缩算法RCCG。它通过反向互补来扩展参考基因组,并利用协素窗采样来检测两个基因组序列之间的最大匹配(MEMs)。经过评估后,这些被选中的匹配将被联合起来形成包含突变的匹配(mcm)。该算法的平均压缩比高于目前最先进的基因组压缩算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Genome Compression Performance by Extending Reference Sequences
We propose an efficient referential genome compression algorithm called RCCG. It extends reference genomes by its reverse complementation and uses coprime window sampling to detect the maximum matches (MEMs) between two genome sequences. After the assessment, those selected matches will be united to form mutation-containing matches (MCMs). The average compression ratio of the proposed algorithm is higher than that of the state-of-the-art genome compression algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信