使用日志值的学术数据集的有效数据规范化策略

V. Sathya Durga, T. Jeyaprakash
{"title":"使用日志值的学术数据集的有效数据规范化策略","authors":"V. Sathya Durga, T. Jeyaprakash","doi":"10.1109/ICCES45898.2019.9002089","DOIUrl":null,"url":null,"abstract":"Data transformation is converting input data from one form to another form. Normalization is a standard data transformation techniques which can be used to transform data. There are many types of normalization techniques, like Min-Max normalization, Cube Root normalization, etc. In this paper, we implement a two-phase normalization process. In the first phase, the data is normalized using Cube Root normalization. Next, the normalized data is still more scaled by applying the logarithmic transformation. Finally, the performance of the transformed values is evaluated against standard metrics.","PeriodicalId":348347,"journal":{"name":"2019 International Conference on Communication and Electronics Systems (ICCES)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An Effective Data Normalization Strategy for Academic Datasets using Log Values\",\"authors\":\"V. Sathya Durga, T. Jeyaprakash\",\"doi\":\"10.1109/ICCES45898.2019.9002089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data transformation is converting input data from one form to another form. Normalization is a standard data transformation techniques which can be used to transform data. There are many types of normalization techniques, like Min-Max normalization, Cube Root normalization, etc. In this paper, we implement a two-phase normalization process. In the first phase, the data is normalized using Cube Root normalization. Next, the normalized data is still more scaled by applying the logarithmic transformation. Finally, the performance of the transformed values is evaluated against standard metrics.\",\"PeriodicalId\":348347,\"journal\":{\"name\":\"2019 International Conference on Communication and Electronics Systems (ICCES)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Communication and Electronics Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES45898.2019.9002089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Communication and Electronics Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES45898.2019.9002089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

数据转换是将输入数据从一种形式转换为另一种形式。规范化是一种标准的数据转换技术,可以用来对数据进行转换。有许多类型的归一化技术,如最小最大值归一化、立方根归一化等。在本文中,我们实现了一个两阶段的规范化过程。在第一阶段,使用立方根规范化对数据进行规范化。接下来,通过应用对数变换对规范化数据进行缩放。最后,根据标准度量评估转换值的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Effective Data Normalization Strategy for Academic Datasets using Log Values
Data transformation is converting input data from one form to another form. Normalization is a standard data transformation techniques which can be used to transform data. There are many types of normalization techniques, like Min-Max normalization, Cube Root normalization, etc. In this paper, we implement a two-phase normalization process. In the first phase, the data is normalized using Cube Root normalization. Next, the normalized data is still more scaled by applying the logarithmic transformation. Finally, the performance of the transformed values is evaluated against standard metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信