从几个过去的设置中学习新产品包装线的自动设置

Steven Koppert, Maximilian Bause, C. Henke, A. Trächtler
{"title":"从几个过去的设置中学习新产品包装线的自动设置","authors":"Steven Koppert, Maximilian Bause, C. Henke, A. Trächtler","doi":"10.1109/INDIN51400.2023.10217972","DOIUrl":null,"url":null,"abstract":"This study investigates the feasibility of automated setup of profile wrapping processes on new products using machine learning on past setup examples. The task is characterized by high complexity of the considered production system in combination with highly varying products and a very small available database. This database also reveals ambiguous ground truth due to human, unsystematic preferences. A simple geometric-physical motivated preprocessing is proposed. On the resulting data, a Deep Convolutional Neural Network in the form of an autoencoder is shown to be very suitable for predicting wrapping actions for new products. The good but improvable results are discussed extensively with respect to the technological background and possible solutions are proposed.","PeriodicalId":174443,"journal":{"name":"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning the Automated Setup of Profile Wrapping Lines for New Products from Few Past Setups\",\"authors\":\"Steven Koppert, Maximilian Bause, C. Henke, A. Trächtler\",\"doi\":\"10.1109/INDIN51400.2023.10217972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the feasibility of automated setup of profile wrapping processes on new products using machine learning on past setup examples. The task is characterized by high complexity of the considered production system in combination with highly varying products and a very small available database. This database also reveals ambiguous ground truth due to human, unsystematic preferences. A simple geometric-physical motivated preprocessing is proposed. On the resulting data, a Deep Convolutional Neural Network in the form of an autoencoder is shown to be very suitable for predicting wrapping actions for new products. The good but improvable results are discussed extensively with respect to the technological background and possible solutions are proposed.\",\"PeriodicalId\":174443,\"journal\":{\"name\":\"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN51400.2023.10217972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51400.2023.10217972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究在过去的设置示例中使用机器学习研究了新产品轮廓包装过程自动设置的可行性。该任务的特点是所考虑的生产系统的高度复杂性,结合高度变化的产品和非常小的可用数据库。该数据库还揭示了由于人类的非系统偏好而产生的模糊的基本事实。提出了一种简单的几何物理驱动预处理方法。在结果数据上,自动编码器形式的深度卷积神经网络被证明非常适合预测新产品的包装动作。从技术背景和可能的解决方案方面广泛讨论了良好但可改进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning the Automated Setup of Profile Wrapping Lines for New Products from Few Past Setups
This study investigates the feasibility of automated setup of profile wrapping processes on new products using machine learning on past setup examples. The task is characterized by high complexity of the considered production system in combination with highly varying products and a very small available database. This database also reveals ambiguous ground truth due to human, unsystematic preferences. A simple geometric-physical motivated preprocessing is proposed. On the resulting data, a Deep Convolutional Neural Network in the form of an autoencoder is shown to be very suitable for predicting wrapping actions for new products. The good but improvable results are discussed extensively with respect to the technological background and possible solutions are proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信