{"title":"具有显式通信的并行科学应用的体系结构需求","authors":"R. Cypher, Alex Ho, S. Konstantinidou, P. Messina","doi":"10.1145/165123.165124","DOIUrl":null,"url":null,"abstract":"This paper studies the behavior of scientific applications running on distributed memory parallel computers. Our goal is to quantify the floating point, memory, I/O and communication requirements of highly parallel scientific applications that perform explicit communication. In addition to quantifying these requirements for fixed problem sizes and numbers of processors, we develop analytical models for the effects of changing the problem size and the degree of parallelism for several of the applications. We use the results to evaluate the trade-offs in the design of multicomputer architectures.","PeriodicalId":410022,"journal":{"name":"Proceedings of the 20th Annual International Symposium on Computer Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1993-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":"{\"title\":\"Architectural Requirements Of Parallel Scientific Applications With Explicit Communication\",\"authors\":\"R. Cypher, Alex Ho, S. Konstantinidou, P. Messina\",\"doi\":\"10.1145/165123.165124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the behavior of scientific applications running on distributed memory parallel computers. Our goal is to quantify the floating point, memory, I/O and communication requirements of highly parallel scientific applications that perform explicit communication. In addition to quantifying these requirements for fixed problem sizes and numbers of processors, we develop analytical models for the effects of changing the problem size and the degree of parallelism for several of the applications. We use the results to evaluate the trade-offs in the design of multicomputer architectures.\",\"PeriodicalId\":410022,\"journal\":{\"name\":\"Proceedings of the 20th Annual International Symposium on Computer Architecture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"158\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/165123.165124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/165123.165124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Architectural Requirements Of Parallel Scientific Applications With Explicit Communication
This paper studies the behavior of scientific applications running on distributed memory parallel computers. Our goal is to quantify the floating point, memory, I/O and communication requirements of highly parallel scientific applications that perform explicit communication. In addition to quantifying these requirements for fixed problem sizes and numbers of processors, we develop analytical models for the effects of changing the problem size and the degree of parallelism for several of the applications. We use the results to evaluate the trade-offs in the design of multicomputer architectures.