使用级联U-Net进行自闭症谱系障碍的眼睛定位

Inès Rahmany, Sabrine Brahmi, Nawrès Khlifa
{"title":"使用级联U-Net进行自闭症谱系障碍的眼睛定位","authors":"Inès Rahmany, Sabrine Brahmi, Nawrès Khlifa","doi":"10.37394/232014.2022.18.20","DOIUrl":null,"url":null,"abstract":"Many computer vision applications Computer Aided Diagnosis require an accurate and efficient eye detector. We represent, in this work, an efficient approach for determining the position of the eye in images presenting faces. First, a series of candidate regions are proposed; next, a set of cascaded U-net is used to detect the eye regions; then edge detection methods are used to detect eyes lids and iris boundary and thus helping determining the gaze direction of person having ASD. Our proposed approach achieved a precision of detection that is better than the current most recent methods in trials utilizing GI4E, BioID, and columbiaGaze datasets. The proposed approach is robust to picture alterations, such as changes in external illumination, facial occlusion, and image modality.","PeriodicalId":305800,"journal":{"name":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eye Localisation using Cascaded U-Net for Autism Spectrum Disorder\",\"authors\":\"Inès Rahmany, Sabrine Brahmi, Nawrès Khlifa\",\"doi\":\"10.37394/232014.2022.18.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many computer vision applications Computer Aided Diagnosis require an accurate and efficient eye detector. We represent, in this work, an efficient approach for determining the position of the eye in images presenting faces. First, a series of candidate regions are proposed; next, a set of cascaded U-net is used to detect the eye regions; then edge detection methods are used to detect eyes lids and iris boundary and thus helping determining the gaze direction of person having ASD. Our proposed approach achieved a precision of detection that is better than the current most recent methods in trials utilizing GI4E, BioID, and columbiaGaze datasets. The proposed approach is robust to picture alterations, such as changes in external illumination, facial occlusion, and image modality.\",\"PeriodicalId\":305800,\"journal\":{\"name\":\"WSEAS TRANSACTIONS ON SIGNAL PROCESSING\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS TRANSACTIONS ON SIGNAL PROCESSING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232014.2022.18.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232014.2022.18.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多计算机视觉应用,计算机辅助诊断需要一个准确、高效的眼睛检测器。在这项工作中,我们提出了一种有效的方法来确定人脸图像中眼睛的位置。首先,提出了一系列候选区域;其次,使用一组级联U-net对眼睛区域进行检测;然后使用边缘检测方法检测眼睑和虹膜边界,从而帮助确定ASD患者的凝视方向。我们提出的方法在使用GI4E、BioID和columbiaGaze数据集的试验中取得了比当前最新方法更好的检测精度。该方法对图像变化具有鲁棒性,如外部光照、面部遮挡和图像模态的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eye Localisation using Cascaded U-Net for Autism Spectrum Disorder
Many computer vision applications Computer Aided Diagnosis require an accurate and efficient eye detector. We represent, in this work, an efficient approach for determining the position of the eye in images presenting faces. First, a series of candidate regions are proposed; next, a set of cascaded U-net is used to detect the eye regions; then edge detection methods are used to detect eyes lids and iris boundary and thus helping determining the gaze direction of person having ASD. Our proposed approach achieved a precision of detection that is better than the current most recent methods in trials utilizing GI4E, BioID, and columbiaGaze datasets. The proposed approach is robust to picture alterations, such as changes in external illumination, facial occlusion, and image modality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信