多边多顶点轮图的复杂性

Yuxuan Wei, Zhinan Gao, X. Lu
{"title":"多边多顶点轮图的复杂性","authors":"Yuxuan Wei, Zhinan Gao, X. Lu","doi":"10.9734/arjom/2023/v19i9694","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on calculate the number of spanning trees of the general wheel graphs, which meansthe original wheel graphs adding large amount of vertices and edges. Particularly, we introduce the C-graphand deduce a new equation that computing the spanning trees by removing C-graphs instead of edges.In Addition, we test our results by Kirchhoff’s matrix-tree theorem in some simple cases and provide thetree entropy of the general wheel graphs. Finally, we analyse the relation between the wheel graph anddouble-wheel graphs and propose the idea of calculating the spanning trees of double-wheel graphs.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Complexity of Wheel Graphs with Multiple Edges and Vertices\",\"authors\":\"Yuxuan Wei, Zhinan Gao, X. Lu\",\"doi\":\"10.9734/arjom/2023/v19i9694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on calculate the number of spanning trees of the general wheel graphs, which meansthe original wheel graphs adding large amount of vertices and edges. Particularly, we introduce the C-graphand deduce a new equation that computing the spanning trees by removing C-graphs instead of edges.In Addition, we test our results by Kirchhoff’s matrix-tree theorem in some simple cases and provide thetree entropy of the general wheel graphs. Finally, we analyse the relation between the wheel graph anddouble-wheel graphs and propose the idea of calculating the spanning trees of double-wheel graphs.\",\"PeriodicalId\":281529,\"journal\":{\"name\":\"Asian Research Journal of Mathematics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Research Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/arjom/2023/v19i9694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2023/v19i9694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们主要计算一般车轮图的生成树数,这意味着原始车轮图添加了大量的顶点和边。特别地,我们引入了c图,并推导了一个新的方程,该方程通过去除c图而不是边来计算生成树。此外,我们用Kirchhoff矩阵树定理在一些简单的情况下检验了我们的结果,并给出了一般车轮图的树熵。最后,分析了车轮图与双轮图的关系,提出了双轮图生成树的计算思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Complexity of Wheel Graphs with Multiple Edges and Vertices
In this paper, we focus on calculate the number of spanning trees of the general wheel graphs, which meansthe original wheel graphs adding large amount of vertices and edges. Particularly, we introduce the C-graphand deduce a new equation that computing the spanning trees by removing C-graphs instead of edges.In Addition, we test our results by Kirchhoff’s matrix-tree theorem in some simple cases and provide thetree entropy of the general wheel graphs. Finally, we analyse the relation between the wheel graph anddouble-wheel graphs and propose the idea of calculating the spanning trees of double-wheel graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信