{"title":"深度网络数据集成中重复实体识别的整体解决方案","authors":"W. Liu, Xiaofeng Meng","doi":"10.1109/SKG.2010.38","DOIUrl":null,"url":null,"abstract":"The proliferation of deep Web offers users a great opportunity to search high-quality information from Web. As a necessary step in deep Web data integration, the goal of duplicate entity identification is to discover the duplicate records from the integrated Web databases for further applications(e.g. price-comparison services). However, most of existing works address this issue only between two data sources, which are not practical to deep Web data integration systems. That is, one duplicate entity matcher trained over two specific Web databases cannot be applied to other Web databases. In addition, the cost of preparing the training set for n Web databases is C_n^2 times higher than that for two Web databases. In this paper, we propose a holistic solution to address the new challenges posed by deep Web, whose goal is to build one duplicate entity matcher over multiple Web databases. The extensive experiments on two domains show that the proposed solution is highly effective for deep Web data integration.","PeriodicalId":105513,"journal":{"name":"2010 Sixth International Conference on Semantics, Knowledge and Grids","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Holistic Solution for Duplicate Entity Identification in Deep Web Data Integration\",\"authors\":\"W. Liu, Xiaofeng Meng\",\"doi\":\"10.1109/SKG.2010.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of deep Web offers users a great opportunity to search high-quality information from Web. As a necessary step in deep Web data integration, the goal of duplicate entity identification is to discover the duplicate records from the integrated Web databases for further applications(e.g. price-comparison services). However, most of existing works address this issue only between two data sources, which are not practical to deep Web data integration systems. That is, one duplicate entity matcher trained over two specific Web databases cannot be applied to other Web databases. In addition, the cost of preparing the training set for n Web databases is C_n^2 times higher than that for two Web databases. In this paper, we propose a holistic solution to address the new challenges posed by deep Web, whose goal is to build one duplicate entity matcher over multiple Web databases. The extensive experiments on two domains show that the proposed solution is highly effective for deep Web data integration.\",\"PeriodicalId\":105513,\"journal\":{\"name\":\"2010 Sixth International Conference on Semantics, Knowledge and Grids\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Sixth International Conference on Semantics, Knowledge and Grids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SKG.2010.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Sixth International Conference on Semantics, Knowledge and Grids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKG.2010.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Holistic Solution for Duplicate Entity Identification in Deep Web Data Integration
The proliferation of deep Web offers users a great opportunity to search high-quality information from Web. As a necessary step in deep Web data integration, the goal of duplicate entity identification is to discover the duplicate records from the integrated Web databases for further applications(e.g. price-comparison services). However, most of existing works address this issue only between two data sources, which are not practical to deep Web data integration systems. That is, one duplicate entity matcher trained over two specific Web databases cannot be applied to other Web databases. In addition, the cost of preparing the training set for n Web databases is C_n^2 times higher than that for two Web databases. In this paper, we propose a holistic solution to address the new challenges posed by deep Web, whose goal is to build one duplicate entity matcher over multiple Web databases. The extensive experiments on two domains show that the proposed solution is highly effective for deep Web data integration.