{"title":"轴向TurbineâÂÂs级气动优化组合方法(1D + 3D","authors":"A. Boiko, A. Usaty, D. Maksiuta","doi":"10.4172/2168-9792.1000191","DOIUrl":null,"url":null,"abstract":"The paper presents the optimization method of turbine stages based on step-by-step application of onedimensional and three-dimensional optimization techniques of the main stage geometrical parameters. Using the developed method, the optimization of the 3rd stage of high pressure steam turbine K-540-23.5 was carried out. As a result of optimization a new stage with an absolute efficiency increase more than 1% compared to the original design was obtained. The reasons leading to such performance boost were analyzed and are represented in the paper.","PeriodicalId":356774,"journal":{"name":"Journal of Aeronautics and Aerospace Engineering","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combined Method (1D + 3D) of the Axial TurbineâÂÂs Stage AerodynamicOptimization\",\"authors\":\"A. Boiko, A. Usaty, D. Maksiuta\",\"doi\":\"10.4172/2168-9792.1000191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the optimization method of turbine stages based on step-by-step application of onedimensional and three-dimensional optimization techniques of the main stage geometrical parameters. Using the developed method, the optimization of the 3rd stage of high pressure steam turbine K-540-23.5 was carried out. As a result of optimization a new stage with an absolute efficiency increase more than 1% compared to the original design was obtained. The reasons leading to such performance boost were analyzed and are represented in the paper.\",\"PeriodicalId\":356774,\"journal\":{\"name\":\"Journal of Aeronautics and Aerospace Engineering\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aeronautics and Aerospace Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9792.1000191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aeronautics and Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9792.1000191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combined Method (1D + 3D) of the Axial TurbineâÂÂs Stage AerodynamicOptimization
The paper presents the optimization method of turbine stages based on step-by-step application of onedimensional and three-dimensional optimization techniques of the main stage geometrical parameters. Using the developed method, the optimization of the 3rd stage of high pressure steam turbine K-540-23.5 was carried out. As a result of optimization a new stage with an absolute efficiency increase more than 1% compared to the original design was obtained. The reasons leading to such performance boost were analyzed and are represented in the paper.