一种基于自定义精度的fpga并行回火MCMC加速结构,且不引入采样误差

Grigorios Mingas, C. Bouganis
{"title":"一种基于自定义精度的fpga并行回火MCMC加速结构,且不引入采样误差","authors":"Grigorios Mingas, C. Bouganis","doi":"10.1109/FCCM.2012.34","DOIUrl":null,"url":null,"abstract":"Markov Chain Monte Carlo (MCMC) is a method used to draw samples from probability distributions in order to estimate - otherwise intractable - integrals. When the distribution is complex, simple MCMC becomes inefficient and advanced, computationally intensive MCMC methods are employed to make sampling possible. This work proposes a novel streaming FPGA architecture to accelerate Parallel Tempering, a widely adopted MCMC method designed to sample from multimodal distributions. The proposed architecture demonstrates how custom precision can be intelligently employed without introducing sampling errors, in order to save resources and increase the sampling throughg put. Speedups of up to two orders of magnitude compared to software and 1.53x-76.88x compared to a GPGPU implementation are achieved when performing Bayesian inference for a mixture model.","PeriodicalId":226197,"journal":{"name":"2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Custom Precision Based Architecture for Accelerating Parallel Tempering MCMC on FPGAs without Introducing Sampling Error\",\"authors\":\"Grigorios Mingas, C. Bouganis\",\"doi\":\"10.1109/FCCM.2012.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Markov Chain Monte Carlo (MCMC) is a method used to draw samples from probability distributions in order to estimate - otherwise intractable - integrals. When the distribution is complex, simple MCMC becomes inefficient and advanced, computationally intensive MCMC methods are employed to make sampling possible. This work proposes a novel streaming FPGA architecture to accelerate Parallel Tempering, a widely adopted MCMC method designed to sample from multimodal distributions. The proposed architecture demonstrates how custom precision can be intelligently employed without introducing sampling errors, in order to save resources and increase the sampling throughg put. Speedups of up to two orders of magnitude compared to software and 1.53x-76.88x compared to a GPGPU implementation are achieved when performing Bayesian inference for a mixture model.\",\"PeriodicalId\":226197,\"journal\":{\"name\":\"2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2012.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2012.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

马尔可夫链蒙特卡罗(MCMC)是一种从概率分布中抽取样本以估计难以处理的积分的方法。当分布复杂时,简单的MCMC变得低效和先进,采用计算密集型的MCMC方法使采样成为可能。这项工作提出了一种新的流FPGA架构来加速并行回火,并行回火是一种广泛采用的MCMC方法,旨在从多模态分布中采样。所提出的体系结构演示了如何在不引入采样误差的情况下智能地使用自定义精度,以节省资源并增加采样吞吐量。当对混合模型执行贝叶斯推理时,与软件相比,速度提高了两个数量级,与GPGPU实现相比,速度提高了1.53x-76.88倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Custom Precision Based Architecture for Accelerating Parallel Tempering MCMC on FPGAs without Introducing Sampling Error
Markov Chain Monte Carlo (MCMC) is a method used to draw samples from probability distributions in order to estimate - otherwise intractable - integrals. When the distribution is complex, simple MCMC becomes inefficient and advanced, computationally intensive MCMC methods are employed to make sampling possible. This work proposes a novel streaming FPGA architecture to accelerate Parallel Tempering, a widely adopted MCMC method designed to sample from multimodal distributions. The proposed architecture demonstrates how custom precision can be intelligently employed without introducing sampling errors, in order to save resources and increase the sampling throughg put. Speedups of up to two orders of magnitude compared to software and 1.53x-76.88x compared to a GPGPU implementation are achieved when performing Bayesian inference for a mixture model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信