Zhi Zhang, Vartika Singh, T. E. Slowe, S. Tulyakov, V. Govindaraju
{"title":"基于非自愿面部表情的实时自动欺骗检测","authors":"Zhi Zhang, Vartika Singh, T. E. Slowe, S. Tulyakov, V. Govindaraju","doi":"10.1109/CVPR.2007.383383","DOIUrl":null,"url":null,"abstract":"Being the most broadly used tool for deceit measurement, the polygraph is a limited method as it suffers from human operator subjectivity and the fact that target subjects are aware of the measurement, which invites the opportunity to alter their behavior or plan counter-measures in advance. The approach presented in this paper attempts to circumvent these problems by unobtrusively and automatically measuring several prior identified deceit indicators (DIs) based upon involuntary, so-called reliable facial expressions through computer vision analysis of image sequences in real time. Reliable expressions are expressions said by the psychology community to be impossible for a significant percentage of the population to convincingly simulate, without feeling a true inner felt emotion. The strategy is to detect the difference between those expressions which arise from internal emotion, implying verity, and those expressions which are simulated, implying deceit. First, a group of facial action units (AUs) related to the reliable expressions are detected based on distance and texture based features. The DIs then can be measured and finally a decision of deceit or verity will be made accordingly. The performance of this proposed approach is evaluated by its real time implementation for deceit detection.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Real-time Automatic Deceit Detection from Involuntary Facial Expressions\",\"authors\":\"Zhi Zhang, Vartika Singh, T. E. Slowe, S. Tulyakov, V. Govindaraju\",\"doi\":\"10.1109/CVPR.2007.383383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Being the most broadly used tool for deceit measurement, the polygraph is a limited method as it suffers from human operator subjectivity and the fact that target subjects are aware of the measurement, which invites the opportunity to alter their behavior or plan counter-measures in advance. The approach presented in this paper attempts to circumvent these problems by unobtrusively and automatically measuring several prior identified deceit indicators (DIs) based upon involuntary, so-called reliable facial expressions through computer vision analysis of image sequences in real time. Reliable expressions are expressions said by the psychology community to be impossible for a significant percentage of the population to convincingly simulate, without feeling a true inner felt emotion. The strategy is to detect the difference between those expressions which arise from internal emotion, implying verity, and those expressions which are simulated, implying deceit. First, a group of facial action units (AUs) related to the reliable expressions are detected based on distance and texture based features. The DIs then can be measured and finally a decision of deceit or verity will be made accordingly. The performance of this proposed approach is evaluated by its real time implementation for deceit detection.\",\"PeriodicalId\":351008,\"journal\":{\"name\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2007.383383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time Automatic Deceit Detection from Involuntary Facial Expressions
Being the most broadly used tool for deceit measurement, the polygraph is a limited method as it suffers from human operator subjectivity and the fact that target subjects are aware of the measurement, which invites the opportunity to alter their behavior or plan counter-measures in advance. The approach presented in this paper attempts to circumvent these problems by unobtrusively and automatically measuring several prior identified deceit indicators (DIs) based upon involuntary, so-called reliable facial expressions through computer vision analysis of image sequences in real time. Reliable expressions are expressions said by the psychology community to be impossible for a significant percentage of the population to convincingly simulate, without feeling a true inner felt emotion. The strategy is to detect the difference between those expressions which arise from internal emotion, implying verity, and those expressions which are simulated, implying deceit. First, a group of facial action units (AUs) related to the reliable expressions are detected based on distance and texture based features. The DIs then can be measured and finally a decision of deceit or verity will be made accordingly. The performance of this proposed approach is evaluated by its real time implementation for deceit detection.