如何将CUDA-WSat-PcL加速5倍

Heng Liu, Arrvindh Shriraman, Evgenia Ternovska
{"title":"如何将CUDA-WSat-PcL加速5倍","authors":"Heng Liu, Arrvindh Shriraman, Evgenia Ternovska","doi":"10.1109/CANDAR.2016.0087","DOIUrl":null,"url":null,"abstract":"The Propositional Satisfiability Problem (SAT) is one of the most fundamental NP-complete problems, and is central to many domains of computer science. Utilizing a massively parallel architecture on a Graphics Processing Unit (GPU) together with a conventional CPU on NVIDIA's Compute Unified Device Architecture (CUDA) platform, this work proposes an efficient scheme to implement one parallel Stochastic Local Search (SLS) algorithms for SAT: CUDA-WSat-PcL. The implementation leads up to 5x speedup over the latest implementation of CUDA-WSat-PcL on CUDA. Additionally, our profiling results show that the CUDA portion of the new implementation is now at least 6x faster.","PeriodicalId":322499,"journal":{"name":"2016 Fourth International Symposium on Computing and Networking (CANDAR)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to Speed Up CUDA-WSat-PcL by 5x\",\"authors\":\"Heng Liu, Arrvindh Shriraman, Evgenia Ternovska\",\"doi\":\"10.1109/CANDAR.2016.0087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Propositional Satisfiability Problem (SAT) is one of the most fundamental NP-complete problems, and is central to many domains of computer science. Utilizing a massively parallel architecture on a Graphics Processing Unit (GPU) together with a conventional CPU on NVIDIA's Compute Unified Device Architecture (CUDA) platform, this work proposes an efficient scheme to implement one parallel Stochastic Local Search (SLS) algorithms for SAT: CUDA-WSat-PcL. The implementation leads up to 5x speedup over the latest implementation of CUDA-WSat-PcL on CUDA. Additionally, our profiling results show that the CUDA portion of the new implementation is now at least 6x faster.\",\"PeriodicalId\":322499,\"journal\":{\"name\":\"2016 Fourth International Symposium on Computing and Networking (CANDAR)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Fourth International Symposium on Computing and Networking (CANDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CANDAR.2016.0087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Symposium on Computing and Networking (CANDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CANDAR.2016.0087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

命题可满足性问题(SAT)是最基本的np完全问题之一,是计算机科学许多领域的核心问题。利用图形处理单元(GPU)上的大规模并行架构以及NVIDIA的计算统一设备架构(CUDA)平台上的传统CPU,本工作提出了一种有效的方案来实现SAT的并行随机局部搜索(SLS)算法:CUDA- wsat - pcl。与CUDA上最新的CUDA- wsat - pcl实现相比,该实现的速度提高了5倍。此外,我们的分析结果表明,新实现的CUDA部分现在至少快了6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to Speed Up CUDA-WSat-PcL by 5x
The Propositional Satisfiability Problem (SAT) is one of the most fundamental NP-complete problems, and is central to many domains of computer science. Utilizing a massively parallel architecture on a Graphics Processing Unit (GPU) together with a conventional CPU on NVIDIA's Compute Unified Device Architecture (CUDA) platform, this work proposes an efficient scheme to implement one parallel Stochastic Local Search (SLS) algorithms for SAT: CUDA-WSat-PcL. The implementation leads up to 5x speedup over the latest implementation of CUDA-WSat-PcL on CUDA. Additionally, our profiling results show that the CUDA portion of the new implementation is now at least 6x faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信