Rishikesh R. Gajjala, Shashwat Banchhor, A. Abdelmoniem, Aritra Dutta, M. Canini, Panos Kalnis
{"title":"基于Huffman编码的快速分布式深度学习编码技术","authors":"Rishikesh R. Gajjala, Shashwat Banchhor, A. Abdelmoniem, Aritra Dutta, M. Canini, Panos Kalnis","doi":"10.1145/3426745.3431334","DOIUrl":null,"url":null,"abstract":"Distributed stochastic algorithms, equipped with gradient compression techniques, such as codebook quantization, are becoming increasingly popular and considered state-of-the-art in training large deep neural network (DNN) models. However, communicating the quantized gradients in a network requires efficient encoding techniques. For this, practitioners generally use Elias encoding-based techniques without considering their computational overhead or data-volume. In this paper, based on Huffman coding, we propose several lossless encoding techniques that exploit different characteristics of the quantized gradients during distributed DNN training. Then, we show their effectiveness on 5 different DNN models across three different data-sets, and compare them with classic state-of-the-art Elias-based encoding techniques. Our results show that the proposed Huffman-based encoders (i.e., RLH, SH, and SHS) can reduce the encoded data-volume by up to 5.1×, 4.32×, and 3.8×, respectively, compared to the Elias-based encoders.","PeriodicalId":301937,"journal":{"name":"Proceedings of the 1st Workshop on Distributed Machine Learning","volume":"13 12 Pt 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Huffman Coding Based Encoding Techniques for Fast Distributed Deep Learning\",\"authors\":\"Rishikesh R. Gajjala, Shashwat Banchhor, A. Abdelmoniem, Aritra Dutta, M. Canini, Panos Kalnis\",\"doi\":\"10.1145/3426745.3431334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed stochastic algorithms, equipped with gradient compression techniques, such as codebook quantization, are becoming increasingly popular and considered state-of-the-art in training large deep neural network (DNN) models. However, communicating the quantized gradients in a network requires efficient encoding techniques. For this, practitioners generally use Elias encoding-based techniques without considering their computational overhead or data-volume. In this paper, based on Huffman coding, we propose several lossless encoding techniques that exploit different characteristics of the quantized gradients during distributed DNN training. Then, we show their effectiveness on 5 different DNN models across three different data-sets, and compare them with classic state-of-the-art Elias-based encoding techniques. Our results show that the proposed Huffman-based encoders (i.e., RLH, SH, and SHS) can reduce the encoded data-volume by up to 5.1×, 4.32×, and 3.8×, respectively, compared to the Elias-based encoders.\",\"PeriodicalId\":301937,\"journal\":{\"name\":\"Proceedings of the 1st Workshop on Distributed Machine Learning\",\"volume\":\"13 12 Pt 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st Workshop on Distributed Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3426745.3431334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on Distributed Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3426745.3431334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Huffman Coding Based Encoding Techniques for Fast Distributed Deep Learning
Distributed stochastic algorithms, equipped with gradient compression techniques, such as codebook quantization, are becoming increasingly popular and considered state-of-the-art in training large deep neural network (DNN) models. However, communicating the quantized gradients in a network requires efficient encoding techniques. For this, practitioners generally use Elias encoding-based techniques without considering their computational overhead or data-volume. In this paper, based on Huffman coding, we propose several lossless encoding techniques that exploit different characteristics of the quantized gradients during distributed DNN training. Then, we show their effectiveness on 5 different DNN models across three different data-sets, and compare them with classic state-of-the-art Elias-based encoding techniques. Our results show that the proposed Huffman-based encoders (i.e., RLH, SH, and SHS) can reduce the encoded data-volume by up to 5.1×, 4.32×, and 3.8×, respectively, compared to the Elias-based encoders.