阻抗屏中矩形坑的散射

Yu.A. Baranchugov, S. Komarov, P. Zatsepin
{"title":"阻抗屏中矩形坑的散射","authors":"Yu.A. Baranchugov, S. Komarov, P. Zatsepin","doi":"10.1109/MMET.2006.1689836","DOIUrl":null,"url":null,"abstract":"Plane-wave scattering from an impedance rectangular pit by means of variational method is investigated. The problem is reduced to Fredholm's integral equations with respect to finite functions. These functions are linear combinations of the tangential components of electrical and magnetic fields on the pit aperture. It is shown that the scattered far-field pattern is a stationary functional with respect to the finite functions. Numerical results of the problem solution are presented","PeriodicalId":236672,"journal":{"name":"2006 International Conference on Mathematical Methods in Electromagnetic Theory","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Scattering from a Rectangular Pit in Impedance Screen\",\"authors\":\"Yu.A. Baranchugov, S. Komarov, P. Zatsepin\",\"doi\":\"10.1109/MMET.2006.1689836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plane-wave scattering from an impedance rectangular pit by means of variational method is investigated. The problem is reduced to Fredholm's integral equations with respect to finite functions. These functions are linear combinations of the tangential components of electrical and magnetic fields on the pit aperture. It is shown that the scattered far-field pattern is a stationary functional with respect to the finite functions. Numerical results of the problem solution are presented\",\"PeriodicalId\":236672,\"journal\":{\"name\":\"2006 International Conference on Mathematical Methods in Electromagnetic Theory\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Mathematical Methods in Electromagnetic Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMET.2006.1689836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Mathematical Methods in Electromagnetic Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.2006.1689836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用变分方法研究了阻抗矩形坑的平面波散射。这个问题被简化为关于有限函数的Fredholm的积分方程。这些函数是坑孔上电场和磁场切向分量的线性组合。结果表明,散射远场图形相对于有限函数是一个平稳泛函。给出了问题求解的数值结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scattering from a Rectangular Pit in Impedance Screen
Plane-wave scattering from an impedance rectangular pit by means of variational method is investigated. The problem is reduced to Fredholm's integral equations with respect to finite functions. These functions are linear combinations of the tangential components of electrical and magnetic fields on the pit aperture. It is shown that the scattered far-field pattern is a stationary functional with respect to the finite functions. Numerical results of the problem solution are presented
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信