一种新的微聚集局部搜索方法

R. Mortazavi, S. Jalili
{"title":"一种新的微聚集局部搜索方法","authors":"R. Mortazavi, S. Jalili","doi":"10.22042/ISECURE.2015.7.1.3","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an effective microaggregation algorithm to produce a more useful protected data for publishing. Microaggregation is mapped to a clustering problem with known minimum and maximum group size constraints. In this scheme, the goal is to cluster n records into groups of at least k and at most 2 k _1 records, such that the sum of the within-group squared error (SSE) is minimized. We propose a local search algorithm which iteratively satisfies the constraints of the optimal solution of the problem. The algorithm solves the problem in O ( n ^2) time. Experimental results on real and synthetic data sets with different distributions demonstrate the effectiveness of the method in producing useful protected data sets.","PeriodicalId":436674,"journal":{"name":"ISC Int. J. Inf. Secur.","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel local search method for microaggregation\",\"authors\":\"R. Mortazavi, S. Jalili\",\"doi\":\"10.22042/ISECURE.2015.7.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an effective microaggregation algorithm to produce a more useful protected data for publishing. Microaggregation is mapped to a clustering problem with known minimum and maximum group size constraints. In this scheme, the goal is to cluster n records into groups of at least k and at most 2 k _1 records, such that the sum of the within-group squared error (SSE) is minimized. We propose a local search algorithm which iteratively satisfies the constraints of the optimal solution of the problem. The algorithm solves the problem in O ( n ^2) time. Experimental results on real and synthetic data sets with different distributions demonstrate the effectiveness of the method in producing useful protected data sets.\",\"PeriodicalId\":436674,\"journal\":{\"name\":\"ISC Int. J. Inf. Secur.\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISC Int. J. Inf. Secur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22042/ISECURE.2015.7.1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISC Int. J. Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22042/ISECURE.2015.7.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种有效的微聚合算法,以产生更有用的保护数据。微聚集被映射为已知最小和最大群体大小约束的聚类问题。在这个方案中,目标是将n条记录聚类成至少k条最多2k条记录的组,从而使组内平方误差(SSE)的总和最小化。提出了一种迭代满足问题最优解约束的局部搜索算法。该算法在O (n ^2)时间内解决了这个问题。在不同分布的真实数据集和合成数据集上的实验结果表明,该方法可以有效地生成有用的保护数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel local search method for microaggregation
In this paper, we propose an effective microaggregation algorithm to produce a more useful protected data for publishing. Microaggregation is mapped to a clustering problem with known minimum and maximum group size constraints. In this scheme, the goal is to cluster n records into groups of at least k and at most 2 k _1 records, such that the sum of the within-group squared error (SSE) is minimized. We propose a local search algorithm which iteratively satisfies the constraints of the optimal solution of the problem. The algorithm solves the problem in O ( n ^2) time. Experimental results on real and synthetic data sets with different distributions demonstrate the effectiveness of the method in producing useful protected data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信