XPGAN:改进Covid-19图像分类的x射线投影生成对抗网络

Tran Minh Quan, Huynh Minh Thanh, Ta Duc Huy, Nguyen Do Trung Chanh, Nguyen Thi Hong Anh, Phan Hoan Vu, N. H. Nam, Tran Quy Tuong, Vu Minh Dien, B. Giang, Bui Huu Trung, S. Q. Truong
{"title":"XPGAN:改进Covid-19图像分类的x射线投影生成对抗网络","authors":"Tran Minh Quan, Huynh Minh Thanh, Ta Duc Huy, Nguyen Do Trung Chanh, Nguyen Thi Hong Anh, Phan Hoan Vu, N. H. Nam, Tran Quy Tuong, Vu Minh Dien, B. Giang, Bui Huu Trung, S. Q. Truong","doi":"10.1109/ISBI48211.2021.9434159","DOIUrl":null,"url":null,"abstract":"This work aims to fight against the current outbreak pandemic by developing a method to classify suspected infected COVID-19 cases. Driven by the urgency, due to the vastly increased number of patients and deaths worldwide, we rely on situationally pragmatic chest X-ray scans and state-of-the-art deep learning techniques to build a robust diagnosis for massive screening, early detection, and in-time isolation decision making. The proposed solution, X-ray Projected Generative Adversarial Network (XPGAN), addresses the most fundamental issue in training such a deep neural network on limited human-annotated datasets. By leveraging the generative adversarial network, we can synthesize a large amount of chest X-ray images with prior categories from more accurate 3D Computed Tomography data, including COVID-19, and jointly train a model with a few hundreds of positive samples. As a result, XPGAN outperforms the vanilla DenseNet121 models and other competing baselines trained on the same frontal chest X-ray images.","PeriodicalId":372939,"journal":{"name":"2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"XPGAN: X-Ray Projected Generative Adversarial Network For Improving Covid-19 Image Classification\",\"authors\":\"Tran Minh Quan, Huynh Minh Thanh, Ta Duc Huy, Nguyen Do Trung Chanh, Nguyen Thi Hong Anh, Phan Hoan Vu, N. H. Nam, Tran Quy Tuong, Vu Minh Dien, B. Giang, Bui Huu Trung, S. Q. Truong\",\"doi\":\"10.1109/ISBI48211.2021.9434159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to fight against the current outbreak pandemic by developing a method to classify suspected infected COVID-19 cases. Driven by the urgency, due to the vastly increased number of patients and deaths worldwide, we rely on situationally pragmatic chest X-ray scans and state-of-the-art deep learning techniques to build a robust diagnosis for massive screening, early detection, and in-time isolation decision making. The proposed solution, X-ray Projected Generative Adversarial Network (XPGAN), addresses the most fundamental issue in training such a deep neural network on limited human-annotated datasets. By leveraging the generative adversarial network, we can synthesize a large amount of chest X-ray images with prior categories from more accurate 3D Computed Tomography data, including COVID-19, and jointly train a model with a few hundreds of positive samples. As a result, XPGAN outperforms the vanilla DenseNet121 models and other competing baselines trained on the same frontal chest X-ray images.\",\"PeriodicalId\":372939,\"journal\":{\"name\":\"2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI48211.2021.9434159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI48211.2021.9434159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

这项工作旨在通过开发新冠肺炎疑似感染病例分类方法,与当前的疫情作斗争。在紧急情况的推动下,由于全球患者和死亡人数大幅增加,我们依靠实际情况下的胸部x射线扫描和最先进的深度学习技术,为大规模筛查、早期发现和及时隔离决策建立强有力的诊断。提出的解决方案,x射线投影生成对抗网络(XPGAN),解决了在有限的人类注释数据集上训练这种深度神经网络的最基本问题。利用生成式对抗网络,我们可以从更准确的3D计算机断层扫描数据(包括COVID-19)中合成大量具有先验类别的胸部x射线图像,并共同训练具有数百个阳性样本的模型。因此,XPGAN在相同的正面胸部x射线图像上训练优于香草DenseNet121模型和其他竞争基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
XPGAN: X-Ray Projected Generative Adversarial Network For Improving Covid-19 Image Classification
This work aims to fight against the current outbreak pandemic by developing a method to classify suspected infected COVID-19 cases. Driven by the urgency, due to the vastly increased number of patients and deaths worldwide, we rely on situationally pragmatic chest X-ray scans and state-of-the-art deep learning techniques to build a robust diagnosis for massive screening, early detection, and in-time isolation decision making. The proposed solution, X-ray Projected Generative Adversarial Network (XPGAN), addresses the most fundamental issue in training such a deep neural network on limited human-annotated datasets. By leveraging the generative adversarial network, we can synthesize a large amount of chest X-ray images with prior categories from more accurate 3D Computed Tomography data, including COVID-19, and jointly train a model with a few hundreds of positive samples. As a result, XPGAN outperforms the vanilla DenseNet121 models and other competing baselines trained on the same frontal chest X-ray images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信