基于spark的局部离群点挖掘算法研究

Haipeng Chen, Siqi Zhao, Han Bao, Hui Kang
{"title":"基于spark的局部离群点挖掘算法研究","authors":"Haipeng Chen, Siqi Zhao, Han Bao, Hui Kang","doi":"10.1109/EIIS.2017.8298559","DOIUrl":null,"url":null,"abstract":"Cluster-based outlier mining algorithm is one of the impotent local outlier mining algorithms, but there are many problems in it. In this paper, we propose an algorithm named CFLDOF to optimize the LDOF algorithm by pruning the dataset with clustering feature trees, then the parallel design of CFLDOF is given, and use the Spark platform to set up improved parallelization algorithm, finally, a comparative experiment is carried out, it is verified that CFLDOF reduces the time complexity, the accuracy is similar to the LDOF.","PeriodicalId":434246,"journal":{"name":"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research of local outlier mining algorithm based on spark\",\"authors\":\"Haipeng Chen, Siqi Zhao, Han Bao, Hui Kang\",\"doi\":\"10.1109/EIIS.2017.8298559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cluster-based outlier mining algorithm is one of the impotent local outlier mining algorithms, but there are many problems in it. In this paper, we propose an algorithm named CFLDOF to optimize the LDOF algorithm by pruning the dataset with clustering feature trees, then the parallel design of CFLDOF is given, and use the Spark platform to set up improved parallelization algorithm, finally, a comparative experiment is carried out, it is verified that CFLDOF reduces the time complexity, the accuracy is similar to the LDOF.\",\"PeriodicalId\":434246,\"journal\":{\"name\":\"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIIS.2017.8298559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIIS.2017.8298559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于聚类的离群点挖掘算法是一种无效的局部离群点挖掘算法,但存在许多问题。本文提出了一种名为CFLDOF的算法,通过聚类特征树对数据集进行裁剪来优化LDOF算法,然后给出了CFLDOF的并行化设计,并利用Spark平台建立了改进的并行化算法,最后进行了对比实验,验证了CFLDOF降低了时间复杂度,精度与LDOF相近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research of local outlier mining algorithm based on spark
Cluster-based outlier mining algorithm is one of the impotent local outlier mining algorithms, but there are many problems in it. In this paper, we propose an algorithm named CFLDOF to optimize the LDOF algorithm by pruning the dataset with clustering feature trees, then the parallel design of CFLDOF is given, and use the Spark platform to set up improved parallelization algorithm, finally, a comparative experiment is carried out, it is verified that CFLDOF reduces the time complexity, the accuracy is similar to the LDOF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信