{"title":"一种用于乳腺癌检测的新型低复杂度超宽带成像框架","authors":"Yasaman Ettefagh, M. H. Moghaddam, Saeed Vahidian","doi":"10.1109/BIBE.2017.8469114","DOIUrl":null,"url":null,"abstract":"In this research work, a novel framework is proposed as an efficient successor to traditional imaging methods for breast cancer detection in order to decrease the computational complexity. In this framework, the breast is divided into segments in an iterative process and in each iteration, the one having the most probability of containing tumor with lowest possible resolution is selected by using suitable decision metrics. After finding the smallest tumor-containing segment, the resolution is increased in the detected tumor-containing segment, leaving the other parts of the breast image with low resolution. Our framework is applied on the most common used beamforming techniques, such as delay and sum (DAS) and delay multiply and sum (DMAS) and according to simulation results, our framework can decrease the computational complexity significantly for both DAS and DMAS without imposing any degradation on accuracy of basic algorithms. The amount of complexity reduction can be determined manually or automatically based on two proposed methods that are described in this framework.","PeriodicalId":262603,"journal":{"name":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel low-complexity framework in ultra-wideband imaging for breast cancer detection\",\"authors\":\"Yasaman Ettefagh, M. H. Moghaddam, Saeed Vahidian\",\"doi\":\"10.1109/BIBE.2017.8469114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research work, a novel framework is proposed as an efficient successor to traditional imaging methods for breast cancer detection in order to decrease the computational complexity. In this framework, the breast is divided into segments in an iterative process and in each iteration, the one having the most probability of containing tumor with lowest possible resolution is selected by using suitable decision metrics. After finding the smallest tumor-containing segment, the resolution is increased in the detected tumor-containing segment, leaving the other parts of the breast image with low resolution. Our framework is applied on the most common used beamforming techniques, such as delay and sum (DAS) and delay multiply and sum (DMAS) and according to simulation results, our framework can decrease the computational complexity significantly for both DAS and DMAS without imposing any degradation on accuracy of basic algorithms. The amount of complexity reduction can be determined manually or automatically based on two proposed methods that are described in this framework.\",\"PeriodicalId\":262603,\"journal\":{\"name\":\"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2017.8469114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2017.8469114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel low-complexity framework in ultra-wideband imaging for breast cancer detection
In this research work, a novel framework is proposed as an efficient successor to traditional imaging methods for breast cancer detection in order to decrease the computational complexity. In this framework, the breast is divided into segments in an iterative process and in each iteration, the one having the most probability of containing tumor with lowest possible resolution is selected by using suitable decision metrics. After finding the smallest tumor-containing segment, the resolution is increased in the detected tumor-containing segment, leaving the other parts of the breast image with low resolution. Our framework is applied on the most common used beamforming techniques, such as delay and sum (DAS) and delay multiply and sum (DMAS) and according to simulation results, our framework can decrease the computational complexity significantly for both DAS and DMAS without imposing any degradation on accuracy of basic algorithms. The amount of complexity reduction can be determined manually or automatically based on two proposed methods that are described in this framework.