对象对话-使用TensorFlow的对象检测和模式跟踪

Rasika Phadnis, Jaya Mishra, S. Bendale
{"title":"对象对话-使用TensorFlow的对象检测和模式跟踪","authors":"Rasika Phadnis, Jaya Mishra, S. Bendale","doi":"10.1109/ICICCT.2018.8473331","DOIUrl":null,"url":null,"abstract":"Objects in household that are frequently in use often follow certain patterns with respect to time and geographical movement. Analysing these patterns can help us keep better track of our objects and maximise efficiency by minimizing time wasted in forgetting or searching for them. In our project, we used TensorFlow, a relatively new library from Google, to model our neural network. The TensorFlow Object Detection API is used to detect multiple objects in real-time video streams. We then introduce an algorithm to detect patterns and alert the user if an anomaly is found. We consider the research presented by Laube et al., Finding REMO-detecting relative motion patterns in geospatial lifelines, 201–214, (2004)[1].","PeriodicalId":334934,"journal":{"name":"2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Objects Talk - Object Detection and Pattern Tracking Using TensorFlow\",\"authors\":\"Rasika Phadnis, Jaya Mishra, S. Bendale\",\"doi\":\"10.1109/ICICCT.2018.8473331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objects in household that are frequently in use often follow certain patterns with respect to time and geographical movement. Analysing these patterns can help us keep better track of our objects and maximise efficiency by minimizing time wasted in forgetting or searching for them. In our project, we used TensorFlow, a relatively new library from Google, to model our neural network. The TensorFlow Object Detection API is used to detect multiple objects in real-time video streams. We then introduce an algorithm to detect patterns and alert the user if an anomaly is found. We consider the research presented by Laube et al., Finding REMO-detecting relative motion patterns in geospatial lifelines, 201–214, (2004)[1].\",\"PeriodicalId\":334934,\"journal\":{\"name\":\"2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICCT.2018.8473331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCT.2018.8473331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

家庭中经常使用的物品往往遵循一定的时间和地理运动模式。分析这些模式可以帮助我们更好地跟踪我们的目标,并通过最大限度地减少遗忘或寻找它们所浪费的时间来提高效率。在我们的项目中,我们使用TensorFlow,一个来自Google的相对较新的库,来建模我们的神经网络。TensorFlow对象检测API用于检测实时视频流中的多个对象。然后,我们引入一种算法来检测模式,并在发现异常时提醒用户。我们考虑了Laube等人的研究,Finding remoo detection relative motion patterns in geospatial lifeline, 201-214,(2004)[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Objects Talk - Object Detection and Pattern Tracking Using TensorFlow
Objects in household that are frequently in use often follow certain patterns with respect to time and geographical movement. Analysing these patterns can help us keep better track of our objects and maximise efficiency by minimizing time wasted in forgetting or searching for them. In our project, we used TensorFlow, a relatively new library from Google, to model our neural network. The TensorFlow Object Detection API is used to detect multiple objects in real-time video streams. We then introduce an algorithm to detect patterns and alert the user if an anomaly is found. We consider the research presented by Laube et al., Finding REMO-detecting relative motion patterns in geospatial lifelines, 201–214, (2004)[1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信