均匀滤波器组的矩阵自适应合成滤波器

Sandeep Patel, R. Dhuli, Brejesh Lall
{"title":"均匀滤波器组的矩阵自适应合成滤波器","authors":"Sandeep Patel, R. Dhuli, Brejesh Lall","doi":"10.1109/NCC.2013.6487978","DOIUrl":null,"url":null,"abstract":"In this paper, we use a matrix adaptive filter as the synthesis stage of a Uniform Filter Bank (UFB) to reconstruct the input signal. We first develop the mathematical theory behind it by applying the model of optimal filtering at the synthesis stage of the UFB and obtaining an expression for the matrix Wiener filter. We have developed a theorem which we use to simplify the expression further. In the absence of required information about the analysis stage, we use adaptive filtering to arrive at the Wiener solution. We use the Least Mean Square (LMS) algorithm to update the filter coefficients. Through experimental results, we find that the adaptive filter is convergent for a stable Wiener filter.","PeriodicalId":202526,"journal":{"name":"2013 National Conference on Communications (NCC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Matrix adaptive synthesis filter for uniform filter bank\",\"authors\":\"Sandeep Patel, R. Dhuli, Brejesh Lall\",\"doi\":\"10.1109/NCC.2013.6487978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use a matrix adaptive filter as the synthesis stage of a Uniform Filter Bank (UFB) to reconstruct the input signal. We first develop the mathematical theory behind it by applying the model of optimal filtering at the synthesis stage of the UFB and obtaining an expression for the matrix Wiener filter. We have developed a theorem which we use to simplify the expression further. In the absence of required information about the analysis stage, we use adaptive filtering to arrive at the Wiener solution. We use the Least Mean Square (LMS) algorithm to update the filter coefficients. Through experimental results, we find that the adaptive filter is convergent for a stable Wiener filter.\",\"PeriodicalId\":202526,\"journal\":{\"name\":\"2013 National Conference on Communications (NCC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2013.6487978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2013.6487978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用矩阵自适应滤波器作为均匀滤波器组(Uniform filter Bank, UFB)的合成级来重构输入信号。我们首先通过在UFB合成阶段应用最优滤波模型并获得矩阵维纳滤波器的表达式来发展其背后的数学理论。我们发展了一个定理,用来进一步简化这个表达式。在缺乏分析阶段所需信息的情况下,我们使用自适应滤波来得到维纳解。我们使用最小均方(LMS)算法来更新滤波器系数。实验结果表明,对于稳定的维纳滤波器,自适应滤波器是收敛的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix adaptive synthesis filter for uniform filter bank
In this paper, we use a matrix adaptive filter as the synthesis stage of a Uniform Filter Bank (UFB) to reconstruct the input signal. We first develop the mathematical theory behind it by applying the model of optimal filtering at the synthesis stage of the UFB and obtaining an expression for the matrix Wiener filter. We have developed a theorem which we use to simplify the expression further. In the absence of required information about the analysis stage, we use adaptive filtering to arrive at the Wiener solution. We use the Least Mean Square (LMS) algorithm to update the filter coefficients. Through experimental results, we find that the adaptive filter is convergent for a stable Wiener filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信