夹边复合厚壳的基本解

Jin Jiao, Hui Wei, Jianlong Zheng, P. Wen
{"title":"夹边复合厚壳的基本解","authors":"Jin Jiao, Hui Wei, Jianlong Zheng, P. Wen","doi":"10.2495/BE410011","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, a rectangular composites double curved shell with four clamped edges is studied under static distributed and concentrated loads. The governing equations for the laminated and functionally graded shells with respect to the middle surface are presented, and the fundamental solutions are obtained. The exact solutions of the laminated and functionally graded shells should serve as the benchmark solutions for any numerical computation methods and can be used in the boundary element method and meshless method.","PeriodicalId":208184,"journal":{"name":"Boundary Elements and other Mesh Reduction Methods XLI","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FUNDAMENTAL SOLUTION OF COMPOSITE THICK SHELLS WITH CLAMPED EDGES\",\"authors\":\"Jin Jiao, Hui Wei, Jianlong Zheng, P. Wen\",\"doi\":\"10.2495/BE410011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this paper, a rectangular composites double curved shell with four clamped edges is studied under static distributed and concentrated loads. The governing equations for the laminated and functionally graded shells with respect to the middle surface are presented, and the fundamental solutions are obtained. The exact solutions of the laminated and functionally graded shells should serve as the benchmark solutions for any numerical computation methods and can be used in the boundary element method and meshless method.\",\"PeriodicalId\":208184,\"journal\":{\"name\":\"Boundary Elements and other Mesh Reduction Methods XLI\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Elements and other Mesh Reduction Methods XLI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/BE410011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Elements and other Mesh Reduction Methods XLI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/BE410011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了四边夹紧矩形复合材料双弯曲壳在静力分布和集中载荷作用下的受力特性。给出了层合和功能梯度壳相对于中间表面的控制方程,并得到了基本解。层合壳和功能梯度壳的精确解应作为任何数值计算方法的基准解,可用于边界元法和无网格法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FUNDAMENTAL SOLUTION OF COMPOSITE THICK SHELLS WITH CLAMPED EDGES
ABSTRACT In this paper, a rectangular composites double curved shell with four clamped edges is studied under static distributed and concentrated loads. The governing equations for the laminated and functionally graded shells with respect to the middle surface are presented, and the fundamental solutions are obtained. The exact solutions of the laminated and functionally graded shells should serve as the benchmark solutions for any numerical computation methods and can be used in the boundary element method and meshless method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信