亚纯$k$微分的拟strebel结构的存在性

B. Shapiro, Guillaume Tahar
{"title":"亚纯$k$微分的拟strebel结构的存在性","authors":"B. Shapiro, Guillaume Tahar","doi":"10.4171/lem/1008","DOIUrl":null,"url":null,"abstract":"In this paper, motivated by the classical notion of a Strebel quadratic differential on a compact Riemann surfaces without boundary we introduce the notion of a quasi-Strebel structure for a meromorphic differential of an arbitrary order. It turns out that every differential of even order k exceeding 2 satisfying certain natural conditions at its singular points admits such a structure. The case of differentials of odd order is quite different and our existence result involves some arithmetic conditions. We discuss the set of quasi-Stebel structures associated to a given differential and introduce the subclass of positive k-differentials. Finally, we provide a family of examples of positive rational differentials and explain their connection with the classical Heine-Stieltjes theory of linear differential equations with polynomial coefficients.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On existence of quasi-Strebel structures for meromorphic $k$-differentials\",\"authors\":\"B. Shapiro, Guillaume Tahar\",\"doi\":\"10.4171/lem/1008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, motivated by the classical notion of a Strebel quadratic differential on a compact Riemann surfaces without boundary we introduce the notion of a quasi-Strebel structure for a meromorphic differential of an arbitrary order. It turns out that every differential of even order k exceeding 2 satisfying certain natural conditions at its singular points admits such a structure. The case of differentials of odd order is quite different and our existence result involves some arithmetic conditions. We discuss the set of quasi-Stebel structures associated to a given differential and introduce the subclass of positive k-differentials. Finally, we provide a family of examples of positive rational differentials and explain their connection with the classical Heine-Stieltjes theory of linear differential equations with polynomial coefficients.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/lem/1008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/1008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文从经典的无边界紧黎曼曲面上Strebel二次微分的概念出发,引入了任意阶亚纯微分的拟Strebel结构的概念。结果表明,每一个大于2的偶k阶微分在其奇点处满足一定的自然条件,都允许这样的结构。奇阶微分的情况则完全不同,我们的存在性结果涉及到一些算术条件。讨论了给定微分的拟stebel结构集,并引入了正k微分的子类。最后,我们提供了一系列正有理微分的例子,并解释了它们与经典的多项式系数线性微分方程的Heine-Stieltjes理论的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On existence of quasi-Strebel structures for meromorphic $k$-differentials
In this paper, motivated by the classical notion of a Strebel quadratic differential on a compact Riemann surfaces without boundary we introduce the notion of a quasi-Strebel structure for a meromorphic differential of an arbitrary order. It turns out that every differential of even order k exceeding 2 satisfying certain natural conditions at its singular points admits such a structure. The case of differentials of odd order is quite different and our existence result involves some arithmetic conditions. We discuss the set of quasi-Stebel structures associated to a given differential and introduce the subclass of positive k-differentials. Finally, we provide a family of examples of positive rational differentials and explain their connection with the classical Heine-Stieltjes theory of linear differential equations with polynomial coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信