{"title":"基于基因表达编程的视觉美学人物识别","authors":"Brandon Sieu, M. Gavrilova","doi":"10.1109/CW.2019.00053","DOIUrl":null,"url":null,"abstract":"The last decade has witnessed an increase in online human interactions, covering all aspects of personal and professional activities. Identification of people based on their behavior rather than physical traits is a growing industry, spanning diverse spheres such as online education, e-commerce and cyber security. One prominent behavior is the expression of opinions, commonly as a reaction to images posted online. Visual aesthetic is a soft, behavioral biometric that refers to a person's sense of fondness to a certain image. Identifying individuals using their visual aesthetics as discriminatory features is an emerging domain of research. This paper introduces a new method for aesthetic feature dimensionality reduction using gene expression programming. The advantage of this method is that the resulting system is capable of using a tree-based genetic approach for feature recombination. Reducing feature dimensionality improves classifier accuracy, reduces computation runtime, and minimizes required storage. The results obtained on a dataset of 200 Flickr users evaluating 40000 images demonstrates a 94% accuracy of identity recognition based solely on users' aesthetic preferences. This outperforms the best-known method by 13.5%.","PeriodicalId":117409,"journal":{"name":"2019 International Conference on Cyberworlds (CW)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Person Identification from Visual Aesthetics Using Gene Expression Programming\",\"authors\":\"Brandon Sieu, M. Gavrilova\",\"doi\":\"10.1109/CW.2019.00053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The last decade has witnessed an increase in online human interactions, covering all aspects of personal and professional activities. Identification of people based on their behavior rather than physical traits is a growing industry, spanning diverse spheres such as online education, e-commerce and cyber security. One prominent behavior is the expression of opinions, commonly as a reaction to images posted online. Visual aesthetic is a soft, behavioral biometric that refers to a person's sense of fondness to a certain image. Identifying individuals using their visual aesthetics as discriminatory features is an emerging domain of research. This paper introduces a new method for aesthetic feature dimensionality reduction using gene expression programming. The advantage of this method is that the resulting system is capable of using a tree-based genetic approach for feature recombination. Reducing feature dimensionality improves classifier accuracy, reduces computation runtime, and minimizes required storage. The results obtained on a dataset of 200 Flickr users evaluating 40000 images demonstrates a 94% accuracy of identity recognition based solely on users' aesthetic preferences. This outperforms the best-known method by 13.5%.\",\"PeriodicalId\":117409,\"journal\":{\"name\":\"2019 International Conference on Cyberworlds (CW)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Cyberworlds (CW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CW.2019.00053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Cyberworlds (CW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2019.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Person Identification from Visual Aesthetics Using Gene Expression Programming
The last decade has witnessed an increase in online human interactions, covering all aspects of personal and professional activities. Identification of people based on their behavior rather than physical traits is a growing industry, spanning diverse spheres such as online education, e-commerce and cyber security. One prominent behavior is the expression of opinions, commonly as a reaction to images posted online. Visual aesthetic is a soft, behavioral biometric that refers to a person's sense of fondness to a certain image. Identifying individuals using their visual aesthetics as discriminatory features is an emerging domain of research. This paper introduces a new method for aesthetic feature dimensionality reduction using gene expression programming. The advantage of this method is that the resulting system is capable of using a tree-based genetic approach for feature recombination. Reducing feature dimensionality improves classifier accuracy, reduces computation runtime, and minimizes required storage. The results obtained on a dataset of 200 Flickr users evaluating 40000 images demonstrates a 94% accuracy of identity recognition based solely on users' aesthetic preferences. This outperforms the best-known method by 13.5%.