H. Liu, Jie Feng, E. Nicoli, L. López, K. Kauffmann, Kwanho Yang, N. Ramesh
{"title":"光伏应用聚异丁烯密封件可靠性预测","authors":"H. Liu, Jie Feng, E. Nicoli, L. López, K. Kauffmann, Kwanho Yang, N. Ramesh","doi":"10.1117/12.931240","DOIUrl":null,"url":null,"abstract":"Polyisobutylene (PIB) or butyl rubber has been used widely in applications such as construction materials, adhesives and sealants, agricultural chemicals, medical devices, personal care products, and fuel additives. Due to the unique low gas permeability, flexibility, and excellent weathering resistance, PIB or PIB based materials are frequently employed in photovoltaic (PV) industry as sealant to protect the electrical assembly in the package as well as moisture sensitive PV cells from aggressive environments. Long term behavior of the PIB sealant within the operating temperature range of the PV devices thus becomes a critical factor to the reliability of the device. In this paper, an experimental study of the temperature dependent fatigue behavior of a PIB based joint is presented. A finite element model capturing the joint region geometry is developed and an approach to estimate lifetime is proposed.","PeriodicalId":140444,"journal":{"name":"Optics + Photonics for Sustainable Energy","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Predicting the reliability of polyisobutylene seal for photovoltaic application\",\"authors\":\"H. Liu, Jie Feng, E. Nicoli, L. López, K. Kauffmann, Kwanho Yang, N. Ramesh\",\"doi\":\"10.1117/12.931240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyisobutylene (PIB) or butyl rubber has been used widely in applications such as construction materials, adhesives and sealants, agricultural chemicals, medical devices, personal care products, and fuel additives. Due to the unique low gas permeability, flexibility, and excellent weathering resistance, PIB or PIB based materials are frequently employed in photovoltaic (PV) industry as sealant to protect the electrical assembly in the package as well as moisture sensitive PV cells from aggressive environments. Long term behavior of the PIB sealant within the operating temperature range of the PV devices thus becomes a critical factor to the reliability of the device. In this paper, an experimental study of the temperature dependent fatigue behavior of a PIB based joint is presented. A finite element model capturing the joint region geometry is developed and an approach to estimate lifetime is proposed.\",\"PeriodicalId\":140444,\"journal\":{\"name\":\"Optics + Photonics for Sustainable Energy\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics + Photonics for Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.931240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics + Photonics for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.931240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting the reliability of polyisobutylene seal for photovoltaic application
Polyisobutylene (PIB) or butyl rubber has been used widely in applications such as construction materials, adhesives and sealants, agricultural chemicals, medical devices, personal care products, and fuel additives. Due to the unique low gas permeability, flexibility, and excellent weathering resistance, PIB or PIB based materials are frequently employed in photovoltaic (PV) industry as sealant to protect the electrical assembly in the package as well as moisture sensitive PV cells from aggressive environments. Long term behavior of the PIB sealant within the operating temperature range of the PV devices thus becomes a critical factor to the reliability of the device. In this paper, an experimental study of the temperature dependent fatigue behavior of a PIB based joint is presented. A finite element model capturing the joint region geometry is developed and an approach to estimate lifetime is proposed.