基于无人机的数字摄影测量露头图像裂缝分割的深度学习应用

Ademir Marques, Graciela Racolte, E. Souza, Hiduino Venâncio Domingos, Rafael Kenji Horota, J. G. Motta, D. Zanotta, C. Cazarin, L. Gonzaga, M. Veronez
{"title":"基于无人机的数字摄影测量露头图像裂缝分割的深度学习应用","authors":"Ademir Marques, Graciela Racolte, E. Souza, Hiduino Venâncio Domingos, Rafael Kenji Horota, J. G. Motta, D. Zanotta, C. Cazarin, L. Gonzaga, M. Veronez","doi":"10.1109/IGARSS47720.2021.9553232","DOIUrl":null,"url":null,"abstract":"Fractures affect the intrinsic properties of permeability and porosity of reservoir geobodies, making its network characterization an important task for fluid flow modeling. Direct acquisition of data on reservoirs is labor-intensive and generally produces sparse information. Thus, the study of analogue outcrops with similar characteristics is often carried out by using unmanned aerial vehicle image acquisition and digital photogrammetry. However, the accurate automatic recognition of the fractures network over the outcrop images remains a challenge. Image segmentation methods based on convolution neural networks (CNNs) were successfully applied in medicine, biology, and other areas, however, not yet in geological fracture detection. This work proposes the validation of two popular CNNs - Segnet and Unet - for pixel-to-pixel segmentation targeting fracture detection. Initial results showed acceptable scores of the metrics mean intersection over union (mIoU) and dice intersection (F1) in both CNNs.","PeriodicalId":315312,"journal":{"name":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deep Learning Application for Fracture Segmentation Over Outcrop Images from UAV-Based Digital Photogrammetry\",\"authors\":\"Ademir Marques, Graciela Racolte, E. Souza, Hiduino Venâncio Domingos, Rafael Kenji Horota, J. G. Motta, D. Zanotta, C. Cazarin, L. Gonzaga, M. Veronez\",\"doi\":\"10.1109/IGARSS47720.2021.9553232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fractures affect the intrinsic properties of permeability and porosity of reservoir geobodies, making its network characterization an important task for fluid flow modeling. Direct acquisition of data on reservoirs is labor-intensive and generally produces sparse information. Thus, the study of analogue outcrops with similar characteristics is often carried out by using unmanned aerial vehicle image acquisition and digital photogrammetry. However, the accurate automatic recognition of the fractures network over the outcrop images remains a challenge. Image segmentation methods based on convolution neural networks (CNNs) were successfully applied in medicine, biology, and other areas, however, not yet in geological fracture detection. This work proposes the validation of two popular CNNs - Segnet and Unet - for pixel-to-pixel segmentation targeting fracture detection. Initial results showed acceptable scores of the metrics mean intersection over union (mIoU) and dice intersection (F1) in both CNNs.\",\"PeriodicalId\":315312,\"journal\":{\"name\":\"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS47720.2021.9553232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS47720.2021.9553232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

裂缝影响储层地质体的渗透性和孔隙度的内在特性,使其网络表征成为流体流动建模的重要任务。直接获取储层数据是一项劳动密集型的工作,而且通常会产生稀疏的信息。因此,通常采用无人机图像采集和数字摄影测量技术对具有相似特征的模拟露头进行研究。然而,在露头图像上准确自动识别裂缝网络仍然是一个挑战。基于卷积神经网络(cnn)的图像分割方法已成功应用于医学、生物学等领域,但尚未应用于地质裂缝检测。这项工作提出了两种流行的cnn - Segnet和Unet -用于针对裂缝检测的像素到像素分割的验证。初步结果表明,在两个cnn中,指标的平均交叉点比并(mIoU)和骰子交叉点(F1)的分数都是可以接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Application for Fracture Segmentation Over Outcrop Images from UAV-Based Digital Photogrammetry
Fractures affect the intrinsic properties of permeability and porosity of reservoir geobodies, making its network characterization an important task for fluid flow modeling. Direct acquisition of data on reservoirs is labor-intensive and generally produces sparse information. Thus, the study of analogue outcrops with similar characteristics is often carried out by using unmanned aerial vehicle image acquisition and digital photogrammetry. However, the accurate automatic recognition of the fractures network over the outcrop images remains a challenge. Image segmentation methods based on convolution neural networks (CNNs) were successfully applied in medicine, biology, and other areas, however, not yet in geological fracture detection. This work proposes the validation of two popular CNNs - Segnet and Unet - for pixel-to-pixel segmentation targeting fracture detection. Initial results showed acceptable scores of the metrics mean intersection over union (mIoU) and dice intersection (F1) in both CNNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信