Inmaculada Armengol, A. Suárez, G. Heredia, A. Ollero
{"title":"电力线上安装螺旋导流器的柔性夹具的设计、集成和测试","authors":"Inmaculada Armengol, A. Suárez, G. Heredia, A. Ollero","doi":"10.1109/AIRPHARO52252.2021.9571044","DOIUrl":null,"url":null,"abstract":"The installation and removal of bird diverters from power lines is conducted nowadays by human operators working from manned helicopters or from the power line itself, which entails a certain risk and cost that can be reduced if an aerial manipulator performs these tasks. This paper presents the design of a lightweight gripper (70 g) which is specific for the installation of helical bird diverters. It consists of a claw-type compliant mechanism that is integrated in an anthropomorphic dual arm system, which is intended to perform the operation, and is attached to a multirotor through a long-reach pendulum configuration. The paper also covers the mechanical integration as well as the utilization of a teleoperation system to test the gripper for the installation at a test bench.","PeriodicalId":415722,"journal":{"name":"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Design, Integration and Testing of Compliant Gripper for the Installation of Helical Bird Diverters on Power Lines\",\"authors\":\"Inmaculada Armengol, A. Suárez, G. Heredia, A. Ollero\",\"doi\":\"10.1109/AIRPHARO52252.2021.9571044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The installation and removal of bird diverters from power lines is conducted nowadays by human operators working from manned helicopters or from the power line itself, which entails a certain risk and cost that can be reduced if an aerial manipulator performs these tasks. This paper presents the design of a lightweight gripper (70 g) which is specific for the installation of helical bird diverters. It consists of a claw-type compliant mechanism that is integrated in an anthropomorphic dual arm system, which is intended to perform the operation, and is attached to a multirotor through a long-reach pendulum configuration. The paper also covers the mechanical integration as well as the utilization of a teleoperation system to test the gripper for the installation at a test bench.\",\"PeriodicalId\":415722,\"journal\":{\"name\":\"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIRPHARO52252.2021.9571044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIRPHARO52252.2021.9571044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design, Integration and Testing of Compliant Gripper for the Installation of Helical Bird Diverters on Power Lines
The installation and removal of bird diverters from power lines is conducted nowadays by human operators working from manned helicopters or from the power line itself, which entails a certain risk and cost that can be reduced if an aerial manipulator performs these tasks. This paper presents the design of a lightweight gripper (70 g) which is specific for the installation of helical bird diverters. It consists of a claw-type compliant mechanism that is integrated in an anthropomorphic dual arm system, which is intended to perform the operation, and is attached to a multirotor through a long-reach pendulum configuration. The paper also covers the mechanical integration as well as the utilization of a teleoperation system to test the gripper for the installation at a test bench.