基于堆叠稀疏自编码器的特征表示故障诊断

Zheng Zhang, X. Ren, Hengxing Lv
{"title":"基于堆叠稀疏自编码器的特征表示故障诊断","authors":"Zheng Zhang, X. Ren, Hengxing Lv","doi":"10.1109/YAC.2018.8406476","DOIUrl":null,"url":null,"abstract":"A deep learning method for fault diagnosis is proposed in this paper. The stacked sparse auto encoder(SSAE) model with the theory of deep learning extracts deep feature representation from original fault data. Compared with traditional methods, SSAE is more efficient because of its deep architecture. The feature representation is used by a softmax classifier for fault detection and classification. The proposed method is experimented on Tennessee Eastman Process(TEP), a chemical industrial process benchmark, to demonstrate its practicality and effectiveness.","PeriodicalId":226586,"journal":{"name":"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fault diagnosis with feature representation based on stacked sparse auto encoder\",\"authors\":\"Zheng Zhang, X. Ren, Hengxing Lv\",\"doi\":\"10.1109/YAC.2018.8406476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A deep learning method for fault diagnosis is proposed in this paper. The stacked sparse auto encoder(SSAE) model with the theory of deep learning extracts deep feature representation from original fault data. Compared with traditional methods, SSAE is more efficient because of its deep architecture. The feature representation is used by a softmax classifier for fault detection and classification. The proposed method is experimented on Tennessee Eastman Process(TEP), a chemical industrial process benchmark, to demonstrate its practicality and effectiveness.\",\"PeriodicalId\":226586,\"journal\":{\"name\":\"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/YAC.2018.8406476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC.2018.8406476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种用于故障诊断的深度学习方法。基于深度学习理论的堆叠稀疏自编码器(SSAE)模型从原始故障数据中提取深度特征表示。与传统方法相比,SSAE因其深层结构而具有更高的效率。特征表示被softmax分类器用于故障检测和分类。以田纳西伊士曼工艺(Tennessee Eastman Process, TEP)为实验对象,验证了该方法的实用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault diagnosis with feature representation based on stacked sparse auto encoder
A deep learning method for fault diagnosis is proposed in this paper. The stacked sparse auto encoder(SSAE) model with the theory of deep learning extracts deep feature representation from original fault data. Compared with traditional methods, SSAE is more efficient because of its deep architecture. The feature representation is used by a softmax classifier for fault detection and classification. The proposed method is experimented on Tennessee Eastman Process(TEP), a chemical industrial process benchmark, to demonstrate its practicality and effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信