实对称矩阵特征方程的牛顿迭代法

R. Militaru
{"title":"实对称矩阵特征方程的牛顿迭代法","authors":"R. Militaru","doi":"10.1109/SYNASC.2006.59","DOIUrl":null,"url":null,"abstract":"The present paper studies the numerical computation of the extreme eigenvalues of a n times n real symmetric matrix A, by the means of the Newton's approximate method for the characteristic polynomial PA(lambda). An iterative algorithm is also presented involving the computation of a trace of an appropriate matrix, instead of using the evaluation of PA(lambda) and its derivative. Numerical examples solved with this algorithm are to be found within as well","PeriodicalId":309740,"journal":{"name":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Newton's Iterative Method for the Characteristic Equation of a Real Symmetric Matrix\",\"authors\":\"R. Militaru\",\"doi\":\"10.1109/SYNASC.2006.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper studies the numerical computation of the extreme eigenvalues of a n times n real symmetric matrix A, by the means of the Newton's approximate method for the characteristic polynomial PA(lambda). An iterative algorithm is also presented involving the computation of a trace of an appropriate matrix, instead of using the evaluation of PA(lambda) and its derivative. Numerical examples solved with this algorithm are to be found within as well\",\"PeriodicalId\":309740,\"journal\":{\"name\":\"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2006.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2006.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用特征多项式PA(λ)的牛顿近似方法,研究了n × n实对称矩阵a的极端特征值的数值计算。本文还提出了一种迭代算法,该算法涉及计算适当矩阵的迹,而不是使用PA(lambda)及其导数的求值。本文还提供了用该算法求解的数值实例
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Newton's Iterative Method for the Characteristic Equation of a Real Symmetric Matrix
The present paper studies the numerical computation of the extreme eigenvalues of a n times n real symmetric matrix A, by the means of the Newton's approximate method for the characteristic polynomial PA(lambda). An iterative algorithm is also presented involving the computation of a trace of an appropriate matrix, instead of using the evaluation of PA(lambda) and its derivative. Numerical examples solved with this algorithm are to be found within as well
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信