{"title":"异构系统奇异值分解的分治方法","authors":"Ding Liu, Ruixuan Li, D. Lilja, Weijun Xiao","doi":"10.1145/2482767.2482813","DOIUrl":null,"url":null,"abstract":"Singular value decomposition (SVD) is a fundamental linear operation that has been used for many applications, such as pattern recognition and statistical information processing. In order to accelerate this time-consuming operation, this paper presents a new divide-and-conquer approach for solving SVD on a heterogeneous CPU-GPU system. We carefully design our algorithm to match the mathematical requirements of SVD to the unique characteristics of a heterogeneous computing platform. This includes a high-performanc solution to the secular equation with good numerical stability, overlapping the CPU and the GPU tasks, and leveraging the GPU bandwidth in a heterogeneous system. The experimental results show that our algorithm has better performance than MKL's divide-and-conquer routine [18] with four cores (eight hardware threads) when the size of the input matrix is larger than 3000. Furthermore, it is up to 33 times faster than LAPACK's divide-and-conquer routine [17], 3 times faster than MKL's divide-and-conquer routine with four cores, and 7 times faster than CULA on the same device, when the size of the matrix grows up to 14,000. Our algorithm is also much faster than previous SVD approaches on GPUs.","PeriodicalId":430420,"journal":{"name":"ACM International Conference on Computing Frontiers","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A divide-and-conquer approach for solving singular value decomposition on a heterogeneous system\",\"authors\":\"Ding Liu, Ruixuan Li, D. Lilja, Weijun Xiao\",\"doi\":\"10.1145/2482767.2482813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Singular value decomposition (SVD) is a fundamental linear operation that has been used for many applications, such as pattern recognition and statistical information processing. In order to accelerate this time-consuming operation, this paper presents a new divide-and-conquer approach for solving SVD on a heterogeneous CPU-GPU system. We carefully design our algorithm to match the mathematical requirements of SVD to the unique characteristics of a heterogeneous computing platform. This includes a high-performanc solution to the secular equation with good numerical stability, overlapping the CPU and the GPU tasks, and leveraging the GPU bandwidth in a heterogeneous system. The experimental results show that our algorithm has better performance than MKL's divide-and-conquer routine [18] with four cores (eight hardware threads) when the size of the input matrix is larger than 3000. Furthermore, it is up to 33 times faster than LAPACK's divide-and-conquer routine [17], 3 times faster than MKL's divide-and-conquer routine with four cores, and 7 times faster than CULA on the same device, when the size of the matrix grows up to 14,000. Our algorithm is also much faster than previous SVD approaches on GPUs.\",\"PeriodicalId\":430420,\"journal\":{\"name\":\"ACM International Conference on Computing Frontiers\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2482767.2482813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2482767.2482813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A divide-and-conquer approach for solving singular value decomposition on a heterogeneous system
Singular value decomposition (SVD) is a fundamental linear operation that has been used for many applications, such as pattern recognition and statistical information processing. In order to accelerate this time-consuming operation, this paper presents a new divide-and-conquer approach for solving SVD on a heterogeneous CPU-GPU system. We carefully design our algorithm to match the mathematical requirements of SVD to the unique characteristics of a heterogeneous computing platform. This includes a high-performanc solution to the secular equation with good numerical stability, overlapping the CPU and the GPU tasks, and leveraging the GPU bandwidth in a heterogeneous system. The experimental results show that our algorithm has better performance than MKL's divide-and-conquer routine [18] with four cores (eight hardware threads) when the size of the input matrix is larger than 3000. Furthermore, it is up to 33 times faster than LAPACK's divide-and-conquer routine [17], 3 times faster than MKL's divide-and-conquer routine with four cores, and 7 times faster than CULA on the same device, when the size of the matrix grows up to 14,000. Our algorithm is also much faster than previous SVD approaches on GPUs.