Ricardo Blasco-Serrano, Jing Lv, R. Thobaben, Eduard Axel Jorswieck, Adrian Kliks, M. Skoglund
{"title":"MISO认知信道中底层和叠加频谱共享策略的比较","authors":"Ricardo Blasco-Serrano, Jing Lv, R. Thobaben, Eduard Axel Jorswieck, Adrian Kliks, M. Skoglund","doi":"10.4108/ICST.CROWNCOM.2012.248283","DOIUrl":null,"url":null,"abstract":"We consider an extension of the cognitive radio channel model in which the secondary transmitter has to obtain (“learn”) the primary message in a first phase rather than having non-causal knowledge of it. We propose an achievable rate region that combines elements of decode-and-forward relaying with coding for the pure cognitive radio channel model. Moreover, we find the choice of parameters that maximize the secondary rate under a primary rate constraint. Finally, we compare numerically the performance of our system to that of an underlay scheme that combines beamforming, rate splitting, and successive decoding. We observe that although the overlay design provides higher rates, the losses due to the first phase are quite severe. In fact, for the considered scenarios, cleverly designed underlay schemes can provide comparable performance.","PeriodicalId":286843,"journal":{"name":"2012 7th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM)","volume":"26 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Comparison of underlay and overlay spectrum sharing strategies in MISO cognitive channels\",\"authors\":\"Ricardo Blasco-Serrano, Jing Lv, R. Thobaben, Eduard Axel Jorswieck, Adrian Kliks, M. Skoglund\",\"doi\":\"10.4108/ICST.CROWNCOM.2012.248283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an extension of the cognitive radio channel model in which the secondary transmitter has to obtain (“learn”) the primary message in a first phase rather than having non-causal knowledge of it. We propose an achievable rate region that combines elements of decode-and-forward relaying with coding for the pure cognitive radio channel model. Moreover, we find the choice of parameters that maximize the secondary rate under a primary rate constraint. Finally, we compare numerically the performance of our system to that of an underlay scheme that combines beamforming, rate splitting, and successive decoding. We observe that although the overlay design provides higher rates, the losses due to the first phase are quite severe. In fact, for the considered scenarios, cleverly designed underlay schemes can provide comparable performance.\",\"PeriodicalId\":286843,\"journal\":{\"name\":\"2012 7th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM)\",\"volume\":\"26 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 7th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ICST.CROWNCOM.2012.248283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ICST.CROWNCOM.2012.248283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of underlay and overlay spectrum sharing strategies in MISO cognitive channels
We consider an extension of the cognitive radio channel model in which the secondary transmitter has to obtain (“learn”) the primary message in a first phase rather than having non-causal knowledge of it. We propose an achievable rate region that combines elements of decode-and-forward relaying with coding for the pure cognitive radio channel model. Moreover, we find the choice of parameters that maximize the secondary rate under a primary rate constraint. Finally, we compare numerically the performance of our system to that of an underlay scheme that combines beamforming, rate splitting, and successive decoding. We observe that although the overlay design provides higher rates, the losses due to the first phase are quite severe. In fact, for the considered scenarios, cleverly designed underlay schemes can provide comparable performance.