微波背景温度-红移渐近关系的精确测定

S. Hahn, R. Hofmann
{"title":"微波背景温度-红移渐近关系的精确测定","authors":"S. Hahn, R. Hofmann","doi":"10.1142/S0217732318500293","DOIUrl":null,"url":null,"abstract":"Based on energy conservation in a Friedmann-Lemaitre-Robertson-Walker (FLRW) Universe, on the Legendre transformation between energy density and pressure, and on nonperturbative asymptotic freedom at high temperatures we derive the coefficient $\\nu_{\\rm CMB}$ in the high-temperature ($T$) -- redshift ($z$) relation, $T/T_0=\\nu_{\\rm CMB}(z+1)$, of the Cosmic Microwave Background (CMB). Theoretically, our calculation relies on a deconfining SU(2) rather than a U(1) photon gas. We prove that $\\nu_{\\rm CMB}=\\left(1/4\\right)^{1/3}=0.629960(5)$, representing a topological invariant. Interestingly, the relative deviation of $\\nu_{\\rm CMB}$ from the critical exponent associated with correlation length of the 3D Ising model, $\\nu_{\\rm Ising}=0.629971(4)$, is less than $2\\times 10^{-5}$. However, we are not yet in a position to establish a theoretical link between $\\nu_{\\rm CMB}$ and $\\nu_{\\rm Ising}$ as suggested by the topological nature of $\\nu_{\\rm CMB}$ and the fact that both theories share a universality class.","PeriodicalId":369778,"journal":{"name":"arXiv: General Physics","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Exact determination of asymptotic CMB temperature-redshift relation\",\"authors\":\"S. Hahn, R. Hofmann\",\"doi\":\"10.1142/S0217732318500293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on energy conservation in a Friedmann-Lemaitre-Robertson-Walker (FLRW) Universe, on the Legendre transformation between energy density and pressure, and on nonperturbative asymptotic freedom at high temperatures we derive the coefficient $\\\\nu_{\\\\rm CMB}$ in the high-temperature ($T$) -- redshift ($z$) relation, $T/T_0=\\\\nu_{\\\\rm CMB}(z+1)$, of the Cosmic Microwave Background (CMB). Theoretically, our calculation relies on a deconfining SU(2) rather than a U(1) photon gas. We prove that $\\\\nu_{\\\\rm CMB}=\\\\left(1/4\\\\right)^{1/3}=0.629960(5)$, representing a topological invariant. Interestingly, the relative deviation of $\\\\nu_{\\\\rm CMB}$ from the critical exponent associated with correlation length of the 3D Ising model, $\\\\nu_{\\\\rm Ising}=0.629971(4)$, is less than $2\\\\times 10^{-5}$. However, we are not yet in a position to establish a theoretical link between $\\\\nu_{\\\\rm CMB}$ and $\\\\nu_{\\\\rm Ising}$ as suggested by the topological nature of $\\\\nu_{\\\\rm CMB}$ and the fact that both theories share a universality class.\",\"PeriodicalId\":369778,\"journal\":{\"name\":\"arXiv: General Physics\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: General Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0217732318500293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217732318500293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

基于FLRW (friedman - lemaitre - robertsson - walker)宇宙中的能量守恒,基于能量密度和压力之间的Legendre变换,以及在高温下的非摄动渐近自由,我们导出了宇宙微波背景(CMB)的高温($T$)—红移($z$)关系$T/T_0=\nu_{\rm CMB}(z+1)$中的系数$\nu_{\rm CMB}$。理论上,我们的计算依赖于定义SU(2)而不是U(1)光子气体。我们证明了$\nu_{\rm CMB}=\left(1/4\right)^{1/3}=0.629960(5)$,表示一个拓扑不变量。有趣的是,$\nu_{\rm CMB}$与三维Ising模型相关长度的临界指数$\nu_{\rm Ising}=0.629971(4)$的相对偏差小于$2\times 10^{-5}$。然而,我们还不能建立$\nu_{\rm CMB}$和$\nu_{\rm Ising}$之间的理论联系,因为$\nu_{\rm CMB}$的拓扑性质和这两个理论共享一个普适类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact determination of asymptotic CMB temperature-redshift relation
Based on energy conservation in a Friedmann-Lemaitre-Robertson-Walker (FLRW) Universe, on the Legendre transformation between energy density and pressure, and on nonperturbative asymptotic freedom at high temperatures we derive the coefficient $\nu_{\rm CMB}$ in the high-temperature ($T$) -- redshift ($z$) relation, $T/T_0=\nu_{\rm CMB}(z+1)$, of the Cosmic Microwave Background (CMB). Theoretically, our calculation relies on a deconfining SU(2) rather than a U(1) photon gas. We prove that $\nu_{\rm CMB}=\left(1/4\right)^{1/3}=0.629960(5)$, representing a topological invariant. Interestingly, the relative deviation of $\nu_{\rm CMB}$ from the critical exponent associated with correlation length of the 3D Ising model, $\nu_{\rm Ising}=0.629971(4)$, is less than $2\times 10^{-5}$. However, we are not yet in a position to establish a theoretical link between $\nu_{\rm CMB}$ and $\nu_{\rm Ising}$ as suggested by the topological nature of $\nu_{\rm CMB}$ and the fact that both theories share a universality class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信