直升机无铰旋翼叶片非定常响应实例研究

Pratik Sarker, U. Chakravarty
{"title":"直升机无铰旋翼叶片非定常响应实例研究","authors":"Pratik Sarker, U. Chakravarty","doi":"10.1115/imece2019-11084","DOIUrl":null,"url":null,"abstract":"\n The helicopter is an essential means of transport for numerous tasks including carrying passengers and equipment, providing air medical services, firefighting, and other military and civil tasks. While in operation, the nature of the unsteady aerodynamic environment surrounding the rotor blades gives rise to a significant amount of vibration to the helicopter. In this study, the unsteady forced response of the Bo 105 hingeless helicopter rotor blade is investigated at the forward flight in terms of the coupled flapping, lead-lag, and torsional deformations. The mathematical model for the steady-state response of the rotor blade is modified to include the unsteady airfoil behavior by using the Theodorsen’s lift deficiency function for three degrees of freedom of motion. The nonlinear mathematical model is solved by the generalized method of lines in terms of the time-varying deflections of the rotor blade. The unsteady airloads are found to create larger deformations compared to that of the steady-state condition for a given advance ratio. The azimuth locations of the peak loadings also vary with different degrees of freedom. The first three natural frequencies and mode shapes of the rotor blade are presented. The model for the forced response analysis is validated by finite element results.","PeriodicalId":119220,"journal":{"name":"Volume 1: Advances in Aerospace Technology","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Case Study of the Unsteady Response of a Hingeless Helicopter Rotor Blade\",\"authors\":\"Pratik Sarker, U. Chakravarty\",\"doi\":\"10.1115/imece2019-11084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The helicopter is an essential means of transport for numerous tasks including carrying passengers and equipment, providing air medical services, firefighting, and other military and civil tasks. While in operation, the nature of the unsteady aerodynamic environment surrounding the rotor blades gives rise to a significant amount of vibration to the helicopter. In this study, the unsteady forced response of the Bo 105 hingeless helicopter rotor blade is investigated at the forward flight in terms of the coupled flapping, lead-lag, and torsional deformations. The mathematical model for the steady-state response of the rotor blade is modified to include the unsteady airfoil behavior by using the Theodorsen’s lift deficiency function for three degrees of freedom of motion. The nonlinear mathematical model is solved by the generalized method of lines in terms of the time-varying deflections of the rotor blade. The unsteady airloads are found to create larger deformations compared to that of the steady-state condition for a given advance ratio. The azimuth locations of the peak loadings also vary with different degrees of freedom. The first three natural frequencies and mode shapes of the rotor blade are presented. The model for the forced response analysis is validated by finite element results.\",\"PeriodicalId\":119220,\"journal\":{\"name\":\"Volume 1: Advances in Aerospace Technology\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Advances in Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2019-11084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-11084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

直升机是许多任务的重要运输工具,包括运送乘客和设备,提供空中医疗服务,消防和其他军事和民用任务。在运行过程中,旋翼叶片周围的非定常空气动力学环境会对直升机产生很大的振动。本文研究了渤105型无铰直升机旋翼叶片在前飞时的非定常强迫响应,包括扑动、前置滞后和扭转变形的耦合。利用三自由度运动的Theodorsen升力不足函数,修正了旋翼叶片稳态响应的数学模型,使其包含了非定常翼型行为。用广义线法求解了旋翼叶片时变挠度的非线性数学模型。研究发现,在一定的超前比下,非定常空气载荷产生的变形比定常条件下更大。峰值载荷的方位位置也随自由度的不同而变化。给出了转子叶片的前三个固有频率和模态振型。有限元结果验证了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Case Study of the Unsteady Response of a Hingeless Helicopter Rotor Blade
The helicopter is an essential means of transport for numerous tasks including carrying passengers and equipment, providing air medical services, firefighting, and other military and civil tasks. While in operation, the nature of the unsteady aerodynamic environment surrounding the rotor blades gives rise to a significant amount of vibration to the helicopter. In this study, the unsteady forced response of the Bo 105 hingeless helicopter rotor blade is investigated at the forward flight in terms of the coupled flapping, lead-lag, and torsional deformations. The mathematical model for the steady-state response of the rotor blade is modified to include the unsteady airfoil behavior by using the Theodorsen’s lift deficiency function for three degrees of freedom of motion. The nonlinear mathematical model is solved by the generalized method of lines in terms of the time-varying deflections of the rotor blade. The unsteady airloads are found to create larger deformations compared to that of the steady-state condition for a given advance ratio. The azimuth locations of the peak loadings also vary with different degrees of freedom. The first three natural frequencies and mode shapes of the rotor blade are presented. The model for the forced response analysis is validated by finite element results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信