ct引导下肺穿刺自动路径规划

Jianquan Zhong, Jinyang Shen, Ling Tang, Ruizhi Hao, Jiayu Zhang, Yuhang Gong, Jing Zhang
{"title":"ct引导下肺穿刺自动路径规划","authors":"Jianquan Zhong, Jinyang Shen, Ling Tang, Ruizhi Hao, Jiayu Zhang, Yuhang Gong, Jing Zhang","doi":"10.1109/CCISP55629.2022.9974252","DOIUrl":null,"url":null,"abstract":"An automatic CT image-based path planning method for lung puncture surgery is proposed due to high failure rate, time consumption, and the high radiation dose of the existing percutaneous lung puncture surgery. The method described in this paper implements automatic organ segmentation of chest CT images. It defines six constraining conditions combined with clinical a priori knowledge to find the optimal puncture path using a multi-objective Pareto optimization method. The rationality and validity of the method were validated based on 25 sets of clinical lung mass data. Experimental results show that the optimal paths found by this system all meet the clinician's surgical requirements.","PeriodicalId":431851,"journal":{"name":"2022 7th International Conference on Communication, Image and Signal Processing (CCISP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CT-guided automatic path planning for lung puncture\",\"authors\":\"Jianquan Zhong, Jinyang Shen, Ling Tang, Ruizhi Hao, Jiayu Zhang, Yuhang Gong, Jing Zhang\",\"doi\":\"10.1109/CCISP55629.2022.9974252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An automatic CT image-based path planning method for lung puncture surgery is proposed due to high failure rate, time consumption, and the high radiation dose of the existing percutaneous lung puncture surgery. The method described in this paper implements automatic organ segmentation of chest CT images. It defines six constraining conditions combined with clinical a priori knowledge to find the optimal puncture path using a multi-objective Pareto optimization method. The rationality and validity of the method were validated based on 25 sets of clinical lung mass data. Experimental results show that the optimal paths found by this system all meet the clinician's surgical requirements.\",\"PeriodicalId\":431851,\"journal\":{\"name\":\"2022 7th International Conference on Communication, Image and Signal Processing (CCISP)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Communication, Image and Signal Processing (CCISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCISP55629.2022.9974252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Communication, Image and Signal Processing (CCISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCISP55629.2022.9974252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对现有经皮肺穿刺手术失败率高、耗时长、辐射剂量大的特点,提出了一种基于CT图像的肺穿刺手术路径自动规划方法。该方法实现了胸部CT图像的自动器官分割。结合临床先验知识,定义6个约束条件,采用多目标Pareto优化方法寻找最优穿刺路径。通过25组临床肺肿块数据验证了该方法的合理性和有效性。实验结果表明,该系统找到的最优路径均满足临床医生的手术需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CT-guided automatic path planning for lung puncture
An automatic CT image-based path planning method for lung puncture surgery is proposed due to high failure rate, time consumption, and the high radiation dose of the existing percutaneous lung puncture surgery. The method described in this paper implements automatic organ segmentation of chest CT images. It defines six constraining conditions combined with clinical a priori knowledge to find the optimal puncture path using a multi-objective Pareto optimization method. The rationality and validity of the method were validated based on 25 sets of clinical lung mass data. Experimental results show that the optimal paths found by this system all meet the clinician's surgical requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信