点集配准的连续凸优化

Yi Gao
{"title":"点集配准的连续凸优化","authors":"Yi Gao","doi":"10.1109/ISBI.2014.6867989","DOIUrl":null,"url":null,"abstract":"We propose a new robust point set registration technique utilizing the global information of the two sets, rather than looking locally, for constructing the point-wise correspondence and estimating the transformation in between. Then, a multi-scale scheme further extends the algorithm to handling nonlinear diffeomorphic transformations. The algorithm is tested on 3D geometric and protein structure data sets to demonstrate its robustness to severe distortions.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Successive convex optimization for point set registration\",\"authors\":\"Yi Gao\",\"doi\":\"10.1109/ISBI.2014.6867989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new robust point set registration technique utilizing the global information of the two sets, rather than looking locally, for constructing the point-wise correspondence and estimating the transformation in between. Then, a multi-scale scheme further extends the algorithm to handling nonlinear diffeomorphic transformations. The algorithm is tested on 3D geometric and protein structure data sets to demonstrate its robustness to severe distortions.\",\"PeriodicalId\":440405,\"journal\":{\"name\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2014.6867989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的鲁棒点集配准技术,该技术利用两个点集的全局信息,而不是局部地寻找,来构造点间的对应关系并估计两者之间的变换。然后,采用多尺度格式将该算法进一步扩展到处理非线性微分同构变换。在三维几何和蛋白质结构数据集上进行了实验,验证了该算法对严重畸变的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Successive convex optimization for point set registration
We propose a new robust point set registration technique utilizing the global information of the two sets, rather than looking locally, for constructing the point-wise correspondence and estimating the transformation in between. Then, a multi-scale scheme further extends the algorithm to handling nonlinear diffeomorphic transformations. The algorithm is tested on 3D geometric and protein structure data sets to demonstrate its robustness to severe distortions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信