兴趣分析利用社交互动内容带情感

Chung-Chi Huang, Lun-Wei Ku
{"title":"兴趣分析利用社交互动内容带情感","authors":"Chung-Chi Huang, Lun-Wei Ku","doi":"10.1109/IRI.2013.6642457","DOIUrl":null,"url":null,"abstract":"We introduce a method for learning to predict reader interest. In our approach, interest analysis bases on PageRank and social interaction content (e.g., reader feedback in social media). The method involves automatically estimating topical interest preferences and determining the sentiment for social content. In interest prediction, different content sources of articles and reader feedback representing readers' viewpoints are weighted accordingly and transformed into content-word weighted word graph. Then, PageRank suggests reader interest with the help of word interestingness scores. We present the prototype system, InterestFinder, that applies the method to interest analysis. Experimental evaluation shows that content source and content word weighting, and scores of interest preferences for words inferred across articles are quite helpful. Our system benefits more from subjective social interaction content than objective one in covering general readers' interest spans.","PeriodicalId":418492,"journal":{"name":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interest analysis using social interaction content with sentiments\",\"authors\":\"Chung-Chi Huang, Lun-Wei Ku\",\"doi\":\"10.1109/IRI.2013.6642457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a method for learning to predict reader interest. In our approach, interest analysis bases on PageRank and social interaction content (e.g., reader feedback in social media). The method involves automatically estimating topical interest preferences and determining the sentiment for social content. In interest prediction, different content sources of articles and reader feedback representing readers' viewpoints are weighted accordingly and transformed into content-word weighted word graph. Then, PageRank suggests reader interest with the help of word interestingness scores. We present the prototype system, InterestFinder, that applies the method to interest analysis. Experimental evaluation shows that content source and content word weighting, and scores of interest preferences for words inferred across articles are quite helpful. Our system benefits more from subjective social interaction content than objective one in covering general readers' interest spans.\",\"PeriodicalId\":418492,\"journal\":{\"name\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2013.6642457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2013.6642457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种学习预测读者兴趣的方法。在我们的方法中,兴趣分析基于PageRank和社交互动内容(例如,社交媒体上的读者反馈)。该方法包括自动估计主题兴趣偏好和确定社会内容的情绪。在兴趣预测中,对文章的不同内容来源和代表读者观点的读者反馈进行相应的加权,转化为内容-词加权词图。然后,PageRank通过单词兴趣度得分来建议读者的兴趣。提出了将该方法应用于兴趣分析的原型系统InterestFinder。实验评估表明,内容源和内容词权重,以及跨文章推断的词的兴趣偏好分数是很有帮助的。在覆盖普通读者的兴趣范围方面,我们的系统受益于主观的社会互动内容,而不是客观的内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interest analysis using social interaction content with sentiments
We introduce a method for learning to predict reader interest. In our approach, interest analysis bases on PageRank and social interaction content (e.g., reader feedback in social media). The method involves automatically estimating topical interest preferences and determining the sentiment for social content. In interest prediction, different content sources of articles and reader feedback representing readers' viewpoints are weighted accordingly and transformed into content-word weighted word graph. Then, PageRank suggests reader interest with the help of word interestingness scores. We present the prototype system, InterestFinder, that applies the method to interest analysis. Experimental evaluation shows that content source and content word weighting, and scores of interest preferences for words inferred across articles are quite helpful. Our system benefits more from subjective social interaction content than objective one in covering general readers' interest spans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信