计算与元素周期表

J. Baez
{"title":"计算与元素周期表","authors":"J. Baez","doi":"10.1109/LICS.2009.43","DOIUrl":null,"url":null,"abstract":"In physics, Feynman diagrams are used to reason about quantum processes. Similar diagrams can also be used to reason about logic, where they represent proofs, and computation, where they represent programs. With the rise of topological quantum field theory and quantum computation, it became clear that diagrammatic reasoning takes advantage of an extensive network of interlocking analogies between physics, topology, logic and computation. These analogies can be made precise using the formalism of symmetric monoidal closed categories. But symmetric monoidal categories are just the n=1, k=3 entry of a hypothesized \"periodic table\" of k-tuply monoidal n-categories. This raises the question of how these analogies extend. An important clue comes from the way symmetric monoidal closed 2-categories describe rewrite rules in the lambda calculus and multiplicative intuitionistic linear logic. This talk is based on work in progress with Paul-Andre Mellies and Mike Stay.","PeriodicalId":415902,"journal":{"name":"2009 24th Annual IEEE Symposium on Logic In Computer Science","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation and the Periodic Table\",\"authors\":\"J. Baez\",\"doi\":\"10.1109/LICS.2009.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In physics, Feynman diagrams are used to reason about quantum processes. Similar diagrams can also be used to reason about logic, where they represent proofs, and computation, where they represent programs. With the rise of topological quantum field theory and quantum computation, it became clear that diagrammatic reasoning takes advantage of an extensive network of interlocking analogies between physics, topology, logic and computation. These analogies can be made precise using the formalism of symmetric monoidal closed categories. But symmetric monoidal categories are just the n=1, k=3 entry of a hypothesized \\\"periodic table\\\" of k-tuply monoidal n-categories. This raises the question of how these analogies extend. An important clue comes from the way symmetric monoidal closed 2-categories describe rewrite rules in the lambda calculus and multiplicative intuitionistic linear logic. This talk is based on work in progress with Paul-Andre Mellies and Mike Stay.\",\"PeriodicalId\":415902,\"journal\":{\"name\":\"2009 24th Annual IEEE Symposium on Logic In Computer Science\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 24th Annual IEEE Symposium on Logic In Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2009.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 24th Annual IEEE Symposium on Logic In Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2009.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在物理学中,费曼图用于对量子过程进行推理。类似的图也可以用于逻辑推理,其中它们表示证明,以及计算,其中它们表示程序。随着拓扑量子场论和量子计算的兴起,图解推理利用了物理、拓扑、逻辑和计算之间广泛的连锁类比网络。这些类比可以用对称单一性闭范畴的形式来精确地进行。但是对称单一性类别只是假设的k-tuply单一性n类“元素周期表”中n=1, k=3的条目。这就提出了这些类比如何延伸的问题。一个重要的线索来自于对称一元闭二范畴描述在lambda演算和乘法直觉线性逻辑中重写规则的方式。这次演讲是基于Paul-Andre Mellies和Mike Stay正在进行的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation and the Periodic Table
In physics, Feynman diagrams are used to reason about quantum processes. Similar diagrams can also be used to reason about logic, where they represent proofs, and computation, where they represent programs. With the rise of topological quantum field theory and quantum computation, it became clear that diagrammatic reasoning takes advantage of an extensive network of interlocking analogies between physics, topology, logic and computation. These analogies can be made precise using the formalism of symmetric monoidal closed categories. But symmetric monoidal categories are just the n=1, k=3 entry of a hypothesized "periodic table" of k-tuply monoidal n-categories. This raises the question of how these analogies extend. An important clue comes from the way symmetric monoidal closed 2-categories describe rewrite rules in the lambda calculus and multiplicative intuitionistic linear logic. This talk is based on work in progress with Paul-Andre Mellies and Mike Stay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信