指数白噪声分布的Wiener积分构造的奇异拉普拉斯域

L. Accardi, U. Ji, Kimiaki Sait�
{"title":"指数白噪声分布的Wiener积分构造的奇异拉普拉斯域","authors":"L. Accardi, U. Ji, Kimiaki Sait�","doi":"10.31390/josa.3.3.01","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a new domain of an exotic Laplacian consisting of some white noise distribution-valued Wiener integrals based on exponential distributions in a Fock space, and give a construction of a stochastic process as an infinite dimensional Brownian motion generated by the exotic Laplacians. The Brownian motion generated by the Gross Laplacian is extended to the stochastic process generated by the Lévy Laplacian on the domain. Moreover we give a relationship between semigroups generated by the exotic Laplacians and the Lévy Laplacian on the new domain.","PeriodicalId":263604,"journal":{"name":"Journal of Stochastic Analysis","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain of Exotic Laplacian Constructed by Wiener Integrals of Exponential White Noise Distributions\",\"authors\":\"L. Accardi, U. Ji, Kimiaki Sait�\",\"doi\":\"10.31390/josa.3.3.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a new domain of an exotic Laplacian consisting of some white noise distribution-valued Wiener integrals based on exponential distributions in a Fock space, and give a construction of a stochastic process as an infinite dimensional Brownian motion generated by the exotic Laplacians. The Brownian motion generated by the Gross Laplacian is extended to the stochastic process generated by the Lévy Laplacian on the domain. Moreover we give a relationship between semigroups generated by the exotic Laplacians and the Lévy Laplacian on the new domain.\",\"PeriodicalId\":263604,\"journal\":{\"name\":\"Journal of Stochastic Analysis\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31390/josa.3.3.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/josa.3.3.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在Fock空间中引入了一个由白噪声分布值Wiener积分组成的奇异拉普拉斯算子的新区域,并给出了由奇异拉普拉斯算子生成的无限维布朗运动的随机过程的构造。将Gross Laplacian生成的布朗运动推广到lsamvy Laplacian生成的随机过程。在新域上给出了由奇异拉普拉斯算子生成的半群与lsamvy拉普拉斯算子生成的半群之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain of Exotic Laplacian Constructed by Wiener Integrals of Exponential White Noise Distributions
In this paper we introduce a new domain of an exotic Laplacian consisting of some white noise distribution-valued Wiener integrals based on exponential distributions in a Fock space, and give a construction of a stochastic process as an infinite dimensional Brownian motion generated by the exotic Laplacians. The Brownian motion generated by the Gross Laplacian is extended to the stochastic process generated by the Lévy Laplacian on the domain. Moreover we give a relationship between semigroups generated by the exotic Laplacians and the Lévy Laplacian on the new domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信