联合迭代优化自适应降阶波束形成方法

He Shun, Yang Zhiwei, Liao Guisheng
{"title":"联合迭代优化自适应降阶波束形成方法","authors":"He Shun, Yang Zhiwei, Liao Guisheng","doi":"10.1109/APSAR.2015.7306258","DOIUrl":null,"url":null,"abstract":"The proposed method realizes adaptive reduced-dimension processing based on joint optimization of both reduced-dimension matrix and beam-forming weight vector. Meanwhile, the spatial spectrum reconstruction technology is used to update the covariance matrix of array data online. The simulation results show that the proposed method is robust to the dimension of the reduced-dimension matrix and significantly improves the output SINR of adaptive beam-former under the condition of few samples.","PeriodicalId":350698,"journal":{"name":"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive reduced-rank beam-forming method using joint iterative optimization\",\"authors\":\"He Shun, Yang Zhiwei, Liao Guisheng\",\"doi\":\"10.1109/APSAR.2015.7306258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed method realizes adaptive reduced-dimension processing based on joint optimization of both reduced-dimension matrix and beam-forming weight vector. Meanwhile, the spatial spectrum reconstruction technology is used to update the covariance matrix of array data online. The simulation results show that the proposed method is robust to the dimension of the reduced-dimension matrix and significantly improves the output SINR of adaptive beam-former under the condition of few samples.\",\"PeriodicalId\":350698,\"journal\":{\"name\":\"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSAR.2015.7306258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR.2015.7306258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

该方法基于降维矩阵和波束形成权向量的联合优化,实现了自适应降维处理。同时,利用空间谱重构技术在线更新阵列数据的协方差矩阵。仿真结果表明,该方法对降维矩阵的维数具有较强的鲁棒性,在样本较少的情况下显著提高了自适应波束形成器的输出信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive reduced-rank beam-forming method using joint iterative optimization
The proposed method realizes adaptive reduced-dimension processing based on joint optimization of both reduced-dimension matrix and beam-forming weight vector. Meanwhile, the spatial spectrum reconstruction technology is used to update the covariance matrix of array data online. The simulation results show that the proposed method is robust to the dimension of the reduced-dimension matrix and significantly improves the output SINR of adaptive beam-former under the condition of few samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信