各种深度学习技术在脑肿瘤分类中的性能分析

Preeti Jaidka, Sachin Jain
{"title":"各种深度学习技术在脑肿瘤分类中的性能分析","authors":"Preeti Jaidka, Sachin Jain","doi":"10.1109/PIECON56912.2023.10085796","DOIUrl":null,"url":null,"abstract":"Brain MRI image tumors are classified using machine learning techniques in which features are extracted and given to the classifier for the classification task. The manual extraction of elements is time-consuming and leads to poor performance due to a poor selection of features. This paper describes the performance analysis of various deep-learning techniques for brain tumor classification. These methods were assessed using three different categorization performance indices. The logistic regression and hybrid approach discovered a maximum classification accuracy of 89% for small and 87% for large datasets.","PeriodicalId":182428,"journal":{"name":"2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of various deep learning techniques for brain tumor classification\",\"authors\":\"Preeti Jaidka, Sachin Jain\",\"doi\":\"10.1109/PIECON56912.2023.10085796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain MRI image tumors are classified using machine learning techniques in which features are extracted and given to the classifier for the classification task. The manual extraction of elements is time-consuming and leads to poor performance due to a poor selection of features. This paper describes the performance analysis of various deep-learning techniques for brain tumor classification. These methods were assessed using three different categorization performance indices. The logistic regression and hybrid approach discovered a maximum classification accuracy of 89% for small and 87% for large datasets.\",\"PeriodicalId\":182428,\"journal\":{\"name\":\"2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIECON56912.2023.10085796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIECON56912.2023.10085796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑MRI图像肿瘤使用机器学习技术进行分类,其中提取特征并给予分类器进行分类任务。手工提取元素非常耗时,并且由于特征选择不佳而导致性能不佳。本文介绍了各种深度学习技术在脑肿瘤分类中的性能分析。使用三种不同的分类性能指标对这些方法进行了评估。逻辑回归和混合方法发现,小数据集的最大分类准确率为89%,大数据集的最大分类准确率为87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis of various deep learning techniques for brain tumor classification
Brain MRI image tumors are classified using machine learning techniques in which features are extracted and given to the classifier for the classification task. The manual extraction of elements is time-consuming and leads to poor performance due to a poor selection of features. This paper describes the performance analysis of various deep-learning techniques for brain tumor classification. These methods were assessed using three different categorization performance indices. The logistic regression and hybrid approach discovered a maximum classification accuracy of 89% for small and 87% for large datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信