一些多项式微分系统在无穷远处具有极大的直线多重性的相图

Vadim Repesco
{"title":"一些多项式微分系统在无穷远处具有极大的直线多重性的相图","authors":"Vadim Repesco","doi":"10.36120/2587-3644.v14i2.68-80","DOIUrl":null,"url":null,"abstract":"The present study delves into the investigation of phase portraits of polynomial differential systems, which are systems of differential equations of the form $\\frac{dx}{dt} = P(x,y), \\frac{dy}{dt} = Q(x,y)$, where $x$ and $y$ are the dependent variables and $t$ is the independent variable. The functions $P(x,y)$ and $Q(x,y)$ are polynomials in $x$ and $y$. The main objective of this research is to obtain the phase portraits of polynomial differential systems of degree $n\\in \\{ 3, 4, 5\\}$ and having an invariant straight line at the infinity of maximal multiplicity.","PeriodicalId":340784,"journal":{"name":"Acta et commentationes: Ştiinţe Exacte şi ale Naturii","volume":"57 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase portraits of some polynomial differential systems with maximal multiplicity of the line at the infinity\",\"authors\":\"Vadim Repesco\",\"doi\":\"10.36120/2587-3644.v14i2.68-80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study delves into the investigation of phase portraits of polynomial differential systems, which are systems of differential equations of the form $\\\\frac{dx}{dt} = P(x,y), \\\\frac{dy}{dt} = Q(x,y)$, where $x$ and $y$ are the dependent variables and $t$ is the independent variable. The functions $P(x,y)$ and $Q(x,y)$ are polynomials in $x$ and $y$. The main objective of this research is to obtain the phase portraits of polynomial differential systems of degree $n\\\\in \\\\{ 3, 4, 5\\\\}$ and having an invariant straight line at the infinity of maximal multiplicity.\",\"PeriodicalId\":340784,\"journal\":{\"name\":\"Acta et commentationes: Ştiinţe Exacte şi ale Naturii\",\"volume\":\"57 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et commentationes: Ştiinţe Exacte şi ale Naturii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36120/2587-3644.v14i2.68-80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et commentationes: Ştiinţe Exacte şi ale Naturii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36120/2587-3644.v14i2.68-80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了多项式微分系统的相图,即$\frac{dx}{dt} = P(x,y), $ frac{dy}{dt} = Q(x,y)$的微分方程组,其中$x$和$y$为因变量,$t$为自变量。函数$P(x,y)$和$Q(x,y)$是$x$和$y$中的多项式。本研究的主要目的是得到次为$n\in \{3,4,5 \}$且在无穷远处具有最大多重性的不变直线的多项式微分系统的相图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase portraits of some polynomial differential systems with maximal multiplicity of the line at the infinity
The present study delves into the investigation of phase portraits of polynomial differential systems, which are systems of differential equations of the form $\frac{dx}{dt} = P(x,y), \frac{dy}{dt} = Q(x,y)$, where $x$ and $y$ are the dependent variables and $t$ is the independent variable. The functions $P(x,y)$ and $Q(x,y)$ are polynomials in $x$ and $y$. The main objective of this research is to obtain the phase portraits of polynomial differential systems of degree $n\in \{ 3, 4, 5\}$ and having an invariant straight line at the infinity of maximal multiplicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信