一种提高前馈神经网络对多值权错误容忍度的功能操作

N. Kamiura, Yasuyuki Taniguchi, N. Matsui
{"title":"一种提高前馈神经网络对多值权错误容忍度的功能操作","authors":"N. Kamiura, Yasuyuki Taniguchi, N. Matsui","doi":"10.1109/ISMVL.2001.924593","DOIUrl":null,"url":null,"abstract":"In this paper we propose feedforward neural networks (NNs for short) tolerating multiple-valued stuck-at faults of connection weights. To improve the fault tolerance against faults with small false absolute values, we employ the activation function with the relatively gentle gradient for the last layer, and steepen the gradient of the function in the intermediate layer. For faults with large false absolute values, the function working as filter inhibits their influence by setting products of inputs and faulty weights to allowable values. The experimental results show that our NN is superior in fault tolerance and learning time to other NNs employing approaches based on fault injection, forcible weight limit and so forth.","PeriodicalId":297353,"journal":{"name":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A functional manipulation for improving tolerance against multiple-valued weight faults of feedforward neural networks\",\"authors\":\"N. Kamiura, Yasuyuki Taniguchi, N. Matsui\",\"doi\":\"10.1109/ISMVL.2001.924593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose feedforward neural networks (NNs for short) tolerating multiple-valued stuck-at faults of connection weights. To improve the fault tolerance against faults with small false absolute values, we employ the activation function with the relatively gentle gradient for the last layer, and steepen the gradient of the function in the intermediate layer. For faults with large false absolute values, the function working as filter inhibits their influence by setting products of inputs and faulty weights to allowable values. The experimental results show that our NN is superior in fault tolerance and learning time to other NNs employing approaches based on fault injection, forcible weight limit and so forth.\",\"PeriodicalId\":297353,\"journal\":{\"name\":\"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2001.924593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2001.924593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种允许连接权值多值卡滞故障的前馈神经网络(简称nn)。为了提高对假绝对值较小的故障的容错性,我们在最后一层采用梯度相对平缓的激活函数,并在中间层使函数梯度变陡。对于假绝对值较大的故障,该函数作为过滤器通过将输入和故障权值的乘积设置为允许值来抑制其影响。实验结果表明,与基于故障注入、强制权值限制等方法的神经网络相比,我们的神经网络在容错性和学习时间上都有明显的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A functional manipulation for improving tolerance against multiple-valued weight faults of feedforward neural networks
In this paper we propose feedforward neural networks (NNs for short) tolerating multiple-valued stuck-at faults of connection weights. To improve the fault tolerance against faults with small false absolute values, we employ the activation function with the relatively gentle gradient for the last layer, and steepen the gradient of the function in the intermediate layer. For faults with large false absolute values, the function working as filter inhibits their influence by setting products of inputs and faulty weights to allowable values. The experimental results show that our NN is superior in fault tolerance and learning time to other NNs employing approaches based on fault injection, forcible weight limit and so forth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信