{"title":"弱耗散浅水方程的爆破现象和整体存在性","authors":"Jiangbo Zhou, Jun De Chen, Wen Zhang","doi":"10.18052/WWW.SCIPRESS.COM/BSMASS.12.10","DOIUrl":null,"url":null,"abstract":"We first establish the local well-posedness for a weakly dissipative shallow water equation which includes both the weakly dissipative Camassa-Holm equation and the weakly dissipative Degasperis-Procesi equation as its special cases. Then two blow-up results are derived for certain initial profiles. Finally, We study the long time behavior of the solutions.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blow-up phenomena and global existence to a weakly dissipative shallow water equation\",\"authors\":\"Jiangbo Zhou, Jun De Chen, Wen Zhang\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/BSMASS.12.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We first establish the local well-posedness for a weakly dissipative shallow water equation which includes both the weakly dissipative Camassa-Holm equation and the weakly dissipative Degasperis-Procesi equation as its special cases. Then two blow-up results are derived for certain initial profiles. Finally, We study the long time behavior of the solutions.\",\"PeriodicalId\":252632,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences and Applications\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/BSMASS.12.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BSMASS.12.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Blow-up phenomena and global existence to a weakly dissipative shallow water equation
We first establish the local well-posedness for a weakly dissipative shallow water equation which includes both the weakly dissipative Camassa-Holm equation and the weakly dissipative Degasperis-Procesi equation as its special cases. Then two blow-up results are derived for certain initial profiles. Finally, We study the long time behavior of the solutions.