非线性偏微分方程最优控制的降阶迭代线性二次调节器(ILQR)技术

Aayushman Sharma, S. Chakravorty
{"title":"非线性偏微分方程最优控制的降阶迭代线性二次调节器(ILQR)技术","authors":"Aayushman Sharma, S. Chakravorty","doi":"10.23919/ACC55779.2023.10156062","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a reduced order Iterative Linear Quadratic Regulator (RO-ILQR) approach for the optimal control of nonlinear Partial Differential Equations (PDE). The approach proposes a novel modification of the ILQR technique: it uses the Method of Snapshots to identify a reduced order Linear Time Varying (LTV) approximation of the nonlinear PDE dynamics around a current estimate of the optimal trajectory, utilizes the identified LTV model to solve a time varying reduced order LQR problem to obtain an improved estimate of the optimal trajectory along with a new reduced basis, and iterates till convergence. The proposed approach is tested on the viscous Burger’s equation and two phase field models for microstructure evolution in materials, and the results show that there is a significant reduction in the computational burden over the standard ILQR approach, without sacrificing performance.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Reduced Order Iterative Linear Quadratic Regulator (ILQR) Technique for the Optimal Control of Nonlinear Partial Differential Equations\",\"authors\":\"Aayushman Sharma, S. Chakravorty\",\"doi\":\"10.23919/ACC55779.2023.10156062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a reduced order Iterative Linear Quadratic Regulator (RO-ILQR) approach for the optimal control of nonlinear Partial Differential Equations (PDE). The approach proposes a novel modification of the ILQR technique: it uses the Method of Snapshots to identify a reduced order Linear Time Varying (LTV) approximation of the nonlinear PDE dynamics around a current estimate of the optimal trajectory, utilizes the identified LTV model to solve a time varying reduced order LQR problem to obtain an improved estimate of the optimal trajectory along with a new reduced basis, and iterates till convergence. The proposed approach is tested on the viscous Burger’s equation and two phase field models for microstructure evolution in materials, and the results show that there is a significant reduction in the computational burden over the standard ILQR approach, without sacrificing performance.\",\"PeriodicalId\":397401,\"journal\":{\"name\":\"2023 American Control Conference (ACC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC55779.2023.10156062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10156062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对非线性偏微分方程(PDE)的最优控制问题,提出了一种降阶迭代线性二次调节器(RO-ILQR)方法。该方法提出了对ILQR技术的一种新的改进:它使用快照方法在当前最优轨迹估计周围识别非线性PDE动力学的降阶线性时变(LTV)近似,利用识别的LTV模型求解时变降阶LQR问题,获得最优轨迹的改进估计以及新的约简基,并迭代直到收敛。该方法在粘性Burger方程和材料微观结构演化的两相场模型上进行了测试,结果表明,与标准的ILQR方法相比,该方法在不牺牲性能的情况下显著减少了计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Reduced Order Iterative Linear Quadratic Regulator (ILQR) Technique for the Optimal Control of Nonlinear Partial Differential Equations
In this paper, we introduce a reduced order Iterative Linear Quadratic Regulator (RO-ILQR) approach for the optimal control of nonlinear Partial Differential Equations (PDE). The approach proposes a novel modification of the ILQR technique: it uses the Method of Snapshots to identify a reduced order Linear Time Varying (LTV) approximation of the nonlinear PDE dynamics around a current estimate of the optimal trajectory, utilizes the identified LTV model to solve a time varying reduced order LQR problem to obtain an improved estimate of the optimal trajectory along with a new reduced basis, and iterates till convergence. The proposed approach is tested on the viscous Burger’s equation and two phase field models for microstructure evolution in materials, and the results show that there is a significant reduction in the computational burden over the standard ILQR approach, without sacrificing performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信